2 resultados para WIFM (Computer program)
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Accurate estimation of road pavement geometry and layer material properties through the use of proper nondestructive testing and sensor technologies is essential for evaluating pavement’s structural condition and determining options for maintenance and rehabilitation. For these purposes, pavement deflection basins produced by the nondestructive Falling Weight Deflectometer (FWD) test data are commonly used. The nondestructive FWD test drops weights on the pavement to simulate traffic loads and measures the created pavement deflection basins. Backcalculation of pavement geometry and layer properties using FWD deflections is a difficult inverse problem, and the solution with conventional mathematical methods is often challenging due to the ill-posed nature of the problem. In this dissertation, a hybrid algorithm was developed to seek robust and fast solutions to this inverse problem. The algorithm is based on soft computing techniques, mainly Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) as well as the use of numerical analysis techniques to properly simulate the geomechanical system. A widely used pavement layered analysis program ILLI-PAVE was employed in the analyses of flexible pavements of various pavement types; including full-depth asphalt and conventional flexible pavements, were built on either lime stabilized soils or untreated subgrade. Nonlinear properties of the subgrade soil and the base course aggregate as transportation geomaterials were also considered. A computer program, Soft Computing Based System Identifier or SOFTSYS, was developed. In SOFTSYS, ANNs were used as surrogate models to provide faster solutions of the nonlinear finite element program ILLI-PAVE. The deflections obtained from FWD tests in the field were matched with the predictions obtained from the numerical simulations to develop SOFTSYS models. The solution to the inverse problem for multi-layered pavements is computationally hard to achieve and is often not feasible due to field variability and quality of the collected data. The primary difficulty in the analysis arises from the substantial increase in the degree of non-uniqueness of the mapping from the pavement layer parameters to the FWD deflections. The insensitivity of some layer properties lowered SOFTSYS model performances. Still, SOFTSYS models were shown to work effectively with the synthetic data obtained from ILLI-PAVE finite element solutions. In general, SOFTSYS solutions very closely matched the ILLI-PAVE mechanistic pavement analysis results. For SOFTSYS validation, field collected FWD data were successfully used to predict pavement layer thicknesses and layer moduli of in-service flexible pavements. Some of the very promising SOFTSYS results indicated average absolute errors on the order of 2%, 7%, and 4% for the Hot Mix Asphalt (HMA) thickness estimation of full-depth asphalt pavements, full-depth pavements on lime stabilized soils and conventional flexible pavements, respectively. The field validations of SOFTSYS data also produced meaningful results. The thickness data obtained from Ground Penetrating Radar testing matched reasonably well with predictions from SOFTSYS models. The differences observed in the HMA and lime stabilized soil layer thicknesses observed were attributed to deflection data variability from FWD tests. The backcalculated asphalt concrete layer thickness results matched better in the case of full-depth asphalt flexible pavements built on lime stabilized soils compared to conventional flexible pavements. Overall, SOFTSYS was capable of producing reliable thickness estimates despite the variability of field constructed asphalt layer thicknesses.
Resumo:
The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.