4 resultados para Thin films and nanosystems
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Thin film adhesion often determines microelectronic device reliability and it is therefore essential to have experimental techniques that accurately and efficiently characterize it. Laser-induced delamination is a novel technique that uses laser-generated stress waves to load thin films at high strain rates and extract the fracture toughness of the film/substrate interface. The effectiveness of the technique in measuring the interface properties of metallic films has been documented in previous studies. The objective of the current effort is to model the effect of residual stresses on the dynamic delamination of thin films. Residual stresses can be high enough to affect the crack advance and the mode mixity of the delimitation event, and must therefore be adequately modeled to make accurate and repeatable predictions of fracture toughness. The equivalent axial force and bending moment generated by the residual stresses are included in a dynamic, nonlinear finite element model of the delaminating film, and the impact of residual stresses on the final extent of the interfacial crack, the relative contribution of shear failure, and the deformed shape of the delaminated film is studied in detail. Another objective of the study is to develop techniques to address issues related to the testing of polymeric films. These type of films adhere well to silicon and the resulting crack advance is often much smaller than for metallic films, making the extraction of the interface fracture toughness more difficult. The use of an inertial layer which enhances the amount of kinetic energy trapped in the film and thus the crack advance is examined. It is determined that the inertial layer does improve the crack advance, although in a relatively limited fashion. The high interface toughness of polymer films often causes the film to fail cohesively when the crack front leaves the weakly bonded region and enters the strong interface. The use of a tapered pre-crack region that provides a more gradual transition to the strong interface is examined. The tapered triangular pre-crack geometry is found to be effective in reducing the stresses induced thereby making it an attractive option. We conclude by studying the impact of modifying the pre-crack geometry to enable the testing of multiple polymer films.
Resumo:
Planar <110> GaAs nanowires and quantum dots grown by atmospheric MOCVD have been introduced to non-standard growth conditions such as incorporating Zn and growing them on free-standing suspended films and on 10° off-cut substrates. Zn doped nanowires exhibited periodic notching along the axis of the wire that is dependent on Zn/Ga gas phase molar ratios. Planar nanowires grown on suspended thin films give insight into the mobility of the seed particle and change in growth direction. Nanowires that were grown on the off-cut sample exhibit anti-parallel growth direction changes. Quantum dots are grown on suspended thin films and show preferential growth at certain temperatures. Envisioned nanowire applications include twin-plane superlattices, axial pn-junctions, nanowire lasers, and the modulation of nanowire growth direction against an impeding barrier and varying substrate conditions.
Resumo:
Self-assembled materials produced in the reaction between alkanethiol and Ag are characterized and compared. It is revealed that the size of the Ag substrate has a significant role in the self-assembly process and determines the reaction products. Alkanethiol adsorbs on the surface of Ag continuous planar thin films and only forms self-assembled monolayers (SAMs), while the reaction between alkanethiol and Ag clusters on inert surfaces is more aggressive and generates a significantly larger amount of alkanethiolate. Two dissimilar products are yielded depending on the size of the clusters. Small Ag clusters are more likely to be converted into multilayer silver-alkanethiolate (AgSR, R = CnH2n+1) crystals, while larger Ag clusters form monolayer-protected clusters (MPCs). The AgSR crystals are initially small and can ripen into large lamellae during thermal annealing. The crystals have facets and flat terraces with extended area, and have a strong preferred orientation in parallel with the substrate surface. The MPCs move laterally upon annealing and reorganize into a single-layer network with their separation distance approximately equal to the length of an extended alkyl chain. AgSR lamellar crystals grown on inert surfaces provide an excellent platform to study the melting characteristics of crystalline lamellae of polymeric materials with the thickness in the nanometer scale. This system is also unique in that each crystal has integer number of layers – magic-number size (thickness). The size of the crystals is controlled by adjusting the amount of Ag and the annealing temperature. X-ray diffraction (XRD) and atomic force microscopy (AFM) are combined to accurately determine the size (number of layers) of the lamellar crystals. The melting characteristics are measured with nanocalorimetry and show discrete melting transitions which are attributed to the magic-number sizes of the lamellar crystals. The discrete melting temperatures are intrinsic properties of the crystals with particular sizes. Smaller lamellar crystals with less number of layers melt at lower temperatures. The melting point depression is inversely proportional to the total thickness of the lamellae – the product of the number of layers and the layer thickness.
Resumo:
The ability to grow ultrathin films layer-by-layer with well-defined epitaxial relationships has allowed research groups worldwide to grow a range of artificial films and superlattices, first for semiconductors, and now with oxides. In the oxides thin film research community, there have been concerted efforts recently to develop a number of epitaxial oxide systems grown on single crystal oxide substrates that display a wide variety of novel interfacial functionality, such as enhanced ferromagnetic ordering, increased charge carrier density, increased optical absorption, etc, at interfaces. The magnitude of these novel properties is dependent upon the structure of thin films, especially interface sharpness, intermixing, defects, and strain, layering sequence in the case of superlattices and the density of interfaces relative to the film thicknesses. To understand the relationship between the interfacial thin film oxide atomic structure and its properties, atomic scale characterization is required. Transmission electron microscopy (TEM) offers the ability to study interfaces of films at high resolution. Scanning transmission electron microscopy (STEM) allows for real space imaging of materials with directly interpretable atomic number contrast. Electron energy loss spectroscopy (EELS), together with STEM, can probe the local chemical composition as well as local electronic states of transition metals and oxygen. Both techniques have been significantly improved by aberration correctors, which reduce the probe size to 1 Å, or less. Aberration correctors have thus made it possible to resolve individual atomic columns, and possibly probe the electronic structure at atomic scales. Separately, using electron probe forming lenses, structural information such as the crystal structure, strain, lattice mismatches, and superlattice ordering can be measured by nanoarea electron diffraction (NED). The combination of STEM, EELS, and NED techniques allows us to gain a fundamental understanding of the properties of oxide superlattices and ultrathin films and their relationship with the corresponding atomic and electronic structure. In this dissertation, I use the aforementioned electron microscopy techniques to investigate several oxide superlattice and ultrathin film systems. The major findings are summarized below. These results were obtained with stringent specimen preparation methods that I developed for high resolution studies, which are described in Chapter 2. The essential materials background and description of electron microscopy techniques are given in Chapter 1 and 2. In a LaMnO3-SrMnO3 superlattice, we demonstrate the interface of LaMnO3-SrMnO3 is sharper than the SrMnO3-LaMnO3 interface. Extra spectral weights in EELS are confined to the sharp interface, whereas at the rougher interface, the extra states are either not present or are not confined to the interface. Both the structural and electronic asymmetries correspond to asymmetric magnetic ordering at low temperature. In a short period LaMnO3-SrTiO3 superlattice for optical applications, we discovered a modified band structure in SrTiO3 ultrathin films relative to thick films and a SrTiO3 substrate, due to charge leakage from LaMnO3 in SrTiO3. This was measured by chemical shifts of the Ti L and O K edges using atomic scale EELS. The interfacial sharpness of LaAlO3 films grown on SrTiO3 was investigated by the STEM/EELS technique together with electron diffraction. This interface, when prepared under specific conditions, is conductive with high carrier mobility. Several suggestions for the conductive interface have been proposed, including a polar catastrophe model, where a large built-in electric field in LaAlO3 films results in electron charge transfer into the SrTiO3 substrate. Other suggested possibilities include oxygen vacancies at the interface and/or oxygen vacancies in the substrate. The abruptness of the interface as well as extent of intermixing has not been thoroughly investigated at high resolution, even though this can strongly influence the electrical transport properties. We found clear evidence for cation intermixing through the LaAlO3-SrTiO3 interface with high spatial resolution EELS and STEM, which contributes to the conduction at the interface. We also found structural defects, such as misfit dislocations, which leads to increased intermixing over coherent interfaces.