2 resultados para Temperature-dependent Sex Determination
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Numerous applications within the mid- and long-wavelength infrared are driving the search for efficient and cost effective detection technologies in this regime. Theoretical calculations have predicted high performance for InAs/GaSb type-II superlattice structures, which rely on mature growth of III-V semiconductors and offer many levels of freedom in design due to band structure engineering. This work focuses on the fabrication and characterization of type-II superlattice infrared detectors. Standard UV-based photolithography was used combined with chemical wet or dry etching techniques in order to fabricate antinomy-based type-II superlattice infrared detectors. Subsequently, Fourier transform infrared spectroscopy and radiometric techniques were applied for optical characterization in order to obtain a detector's spectrum and response, as well as the overall detectivity in combination with electrical characterization. Temperature dependent electrical characterization was used to extract information about the limiting dark current processes. This work resulted in the first demonstration of an InAs/GaSb type-II superlattice infrared photodetector grown by metalorganic chemical vapor deposition. A peak detectivity of 1.6x10^9 Jones at 78 K was achieved for this device with a 11 micrometer zero cutoff wavelength. Furthermore the interband tunneling detector designed for the mid-wavelength infrared regime was studied. Similar results to those previously published were obtained.
Resumo:
Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity have been made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C , the thermal conductivity K, ex and the anomalous temperature dependence of the ultrasound velocity Deltav/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that K and Deltav/v are determined by the same localized excitations responsible for C , but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. Furthermore, a consistent account for the measured C , K, ex and Deltav/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.