3 resultados para Task orientation and team

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) have been studied as a prominent class of high performance electronic materials for next generation electronics. Their geometry dependent electronic structure, ballistic transport and low power dissipation due to quasi one dimensional transport, and their capability of carrying high current densities are some of the main reasons for the optimistic expectations on SWNTs. However, device applications of individual SWNTs have been hindered by uncontrolled variations in characteristics and lack of scalable methods to integrate SWNTs into electronic devices. One relatively new direction in SWNT electronics, which avoids these issues, is using arrays of SWNTs, where the ensemble average may provide uniformity from device to device, and this new breed of electronic material can be integrated into electronic devices in a scalable fashion. This dissertation describes (1) methods for characterization of SWNT arrays, (2) how the electrical transport in these two-dimensional arrays depend on length scales and spatial anisotropy, (3) the interaction of aligned SWNTs with the underlying substrate, and (4) methods for scalable integration of SWNT arrays into electronic devices. The electrical characterization of SWNT arrays have been realized by polymer electrolyte-gated SWNT thin film transistors (TFTs). Polymer electrolyte-gating addresses many technical difficulties inherent to electrical characterization by gating through oxide-dielectrics. Having shown polymer electrolyte-gating can be successfully applied on SWNT arrays, we have studied the length scaling dependence of electrical transport in SWNT arrays. Ultrathin films formed by sub-monolayer surface coverage of SWNT arrays are very interesting systems in terms of the physics of two-dimensional electronic transport. We have observed that they behave qualitatively different than the classical conducting films, which obey the Ohm’s law. The resistance of an ultrathin film of SWNT arrays is indeed non-linear with the length of the film, across which the transport occurs. More interestingly, a transition between conducting and insulating states is observed at a critical surface coverage, which is called percolation limit. The surface coverage of conducting SWNTs can be manipulated by turning on and off the semiconductors in the SWNT array, leading to the operation principle of SWNT TFTs. The percolation limit depends also on the length and the spatial orientation of SWNTs. We have also observed that the percolation limit increases abruptly for aligned arrays of SWNTs, which are grown on single crystal quartz substrates. In this dissertation, we also compare our experimental results with a two-dimensional stick network model, which gives a good qualitative picture of the electrical transport in SWNT arrays in terms of surface coverage, length scaling, and spatial orientation, and briefly discuss the validity of this model. However, the electronic properties of SWNT arrays are not only determined by geometrical arguments. The contact resistances at the nanotube-nanotube and nanotube-electrode (bulk metal) interfaces, and interactions with the local chemical groups and the underlying substrates are among other issues related to the electronic transport in SWNT arrays. Different aspects of these factors have been studied in detail by many groups. In fact, I have also included a brief discussion about electron injection onto semiconducting SWNTs by polymer dopants. On the other hand, we have compared the substrate-SWNT interactions for isotropic (in two dimensions) arrays of SWNTs grown on Si/SiO2 substrates and horizontally (on substrate) aligned arrays of SWNTs grown on single crystal quartz substrates. The anisotropic interactions associated with the quartz lattice between quartz and SWNTs that allow near perfect horizontal alignment on substrate along a particular crystallographic direction is examined by Raman spectroscopy, and shown to lead to uniaxial compressive strain in as-grown SWNTs on single crystal quartz. This is the first experimental demonstration of the hard-to-achieve uniaxial compression of SWNTs. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is non-uniform and can be larger than 1% locally at room temperature. Effects of device fabrication steps on the non-uniform strain are also examined and implications on electrical performance are discussed. Based on our findings, there are discussions about device performances and designs included in this dissertation. The channel length dependences of device mobilities and on/off ratios are included for SWNT TFTs. Time response of polymer-electrolyte gated SWNT TFTs has been measured to be ~300 Hz, and a proof-of-concept logic inverter has been fabricated by using polymer electrolyte gated SWNT TFTs for macroelectronic applications. Finally, I dedicated a chapter on scalable device designs based on aligned arrays of SWNTs, including a design for SWNT memory devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, Korean-English bilingual (KEB) and Korean monolingual (KM) children, between the ages of 8 and 13 years, and KEB adults, ages 18 and older, were examined with one speech perception task, called the Nonsense Syllable Confusion Matrix (NSCM) task (Allen, 2005), and two production tasks, called the Nonsense Syllable Imitation Task (NSIT) and the Nonword Repetition Task (NRT; Dollaghan & Campbell, 1998). The present study examined (a) which English sounds on the NSCM task were identified less well, presumably due to interference from Korean phonology, in bilinguals learning English as a second language (L2) and in monolinguals learning English as a foreign language (FL); (b) which English phonemes on the NSIT were more challenging for bilinguals and monolinguals to produce; (c) whether perception on the NSCM task is related to production on the NSIT, or phonological awareness, as measured by the NRT; and (d) whether perception and production differ in three age-language status groups (i.e., KEB children, KEB adults, and KM children) and in three proficiency subgroups of KEB children (i.e., English-dominant, ED; balanced, BAL; and Korean-dominant, KD). In order to determine English proficiency in each group, language samples were extensively and rigorously analyzed, using software, called Systematic Analysis of Language Transcripts (SALT). Length of samples in complete and intelligible utterances, number of different and total words (NDW and NTW, respectively), speech rate in words per minute (WPM), and number of grammatical errors, mazes, and abandoned utterances were measured and compared among the three initial groups and the three proficiency subgroups. Results of the language sample analysis (LSA) showed significant group differences only between the KEBs and the KM children, but not between the KEB children and adults. Nonetheless, compared to normative means (from a sample length- and age-matched database provided by SALT), the KEB adult group and the KD subgroup produced English at significantly slower speech rates than expected for monolingual, English-speaking counterparts. Two existing models of bilingual speech perception and production—the Speech Learning Model or SLM (Flege, 1987, 1992) and the Perceptual Assimilation Model or PAM (Best, McRoberts, & Sithole, 1988; Best, McRoberts, & Goodell, 2001)—were considered to see if they could account for the perceptual and production patterns evident in the present study. The selected English sounds for stimuli in the NSCM task and the NSIT were 10 consonants, /p, b, k, g, f, θ, s, z, ʧ, ʤ/, and 3 vowels /I, ɛ, æ/, which were used to create 30 nonsense syllables in a consonant-vowel structure. Based on phonetic or phonemic differences between the two languages, English sounds were categorized either as familiar sounds—namely, English sounds that are similar, but not identical, to L1 Korean, including /p, k, s, ʧ, ɛ/—or unfamiliar sounds—namely, English sounds that are new to L1, including /b, g, f, θ, z, ʤ, I, æ/. The results of the NSCM task showed that (a) consonants were perceived correctly more often than vowels, (b) familiar sounds were perceived correctly more often than unfamiliar ones, and (c) familiar consonants were perceived correctly more often than unfamiliar ones across the three age-language status groups and across the three proficiency subgroups; and (d) the KEB children perceived correctly more often than the KEB adults, the KEB children and adults perceived correctly more often than the KM children, and the ED and BAL subgroups perceived correctly more often than the KD subgroup. The results of the NSIT showed (a) consonants were produced more accurately than vowels, and (b) familiar sounds were produced more accurately than unfamiliar ones, across the three age-language status groups. Also, (c) familiar consonants were produced more accurately than unfamiliar ones in the KEB and KM child groups, and (d) unfamiliar vowels were produced more accurately than a familiar one in the KEB child group, but the reverse was true in the KEB adult and KM child groups. The KEB children produced sounds correctly significantly more often than the KM children and the KEB adults, though the percent correct differences were smaller than for perception. Production differences were not found among the three proficiency subgroups. Perception on the NSCM task was compared to production on the NSIT and NRT. Weak positive correlations were found between perception and production (NSIT) for unfamiliar consonants and sounds, whereas a weak negative correlation was found for unfamiliar vowels. Several correlations were significant for perceptual performance on the NSCM task and overall production performance on the NRT: for unfamiliar consonants, unfamiliar vowels, unfamiliar sounds, consonants, vowels, and overall performance on the NSCM task. Nonetheless, no significant correlation was found between production on the NSIT and NRT. Evidently these are two very different production tasks, where immediate imitation of single syllables on the NSIT results in high performance for all groups. Findings of the present study suggest that (a) perception and production of L2 consonants differ from those of vowels; (b) perception and production of L2 sounds involve an interaction of sound type and familiarity; (c) a weak relation exists between perception and production performance for unfamiliar sounds; and (d) L2 experience generally predicts perceptual and production performance. The present study yields several conclusions. The first is that familiarity of sounds is an important influence on L2 learning, as claimed by both SLM and PAM. In the present study, familiar sounds were perceived and produced correctly more often than unfamiliar ones in most cases, in keeping with PAM, though experienced L2 learners (i.e., the KEB children) produced unfamiliar vowels better than familiar ones, in keeping with SLM. Nonetheless, the second conclusion is that neither SLM nor PAM consistently and thoroughly explains the results of the present study. This is because both theories assume that the influence of L1 on the perception of L2 consonants and vowels works in the same way as for production of them. The third and fourth conclusions are two proposed arguments: that perception and production of consonants are different than for vowels, and that sound type interacts with familiarity and L2 experience. These two arguments can best explain the current findings. These findings may help us to develop educational curricula for bilingual individuals listening to and articulating English. Further, the extensive analysis of spontaneous speech in the present study should contribute to the specification of parameters for normal language development and function in Korean-English bilingual children and adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human operators are unique in their decision making capability, judgment and nondeterminism. Their sense of judgment, unpredictable decision procedures, susceptibility to environmental elements can cause them to erroneously execute a given task description to operate a computer system. Usually, a computer system is protected against some erroneous human behaviors by having necessary safeguard mechanisms in place. But some erroneous human operator behaviors can lead to severe or even fatal consequences especially in safety critical systems. A generalized methodology that can allow modeling and analyzing the interactions between computer systems and human operators where the operators are allowed to deviate from their prescribed behaviors will provide a formal understanding of the robustness of a computer system against possible aberrant behaviors by its human operators. We provide several methodology for assisting in modeling and analyzing human behaviors exhibited while operating computer systems. Every human operator is usually given a specific recommended set of guidelines for operating a system. We first present process algebraic methodology for modeling and verifying recommended human task execution behavior. We present how one can perform runtime monitoring of a computer system being operated by a human operator for checking violation of temporal safety properties. We consider the concept of a protection envelope giving a wider class of behaviors than those strictly prescribed by a human task that can be tolerated by a system. We then provide a framework for determining whether a computer system can maintain its guarantees if the human operators operate within their protection envelopes. This framework also helps to determine the robustness of the computer system under weakening of the protection envelopes. In this regard, we present a tool called Tutela that assists in implementing the framework. We then examine the ability of a system to remain safe under broad classes of variations of the prescribed human task. We develop a framework for addressing two issues. The first issue is: given a human task specification and a protection envelope, will the protection envelope properties still hold under standard erroneous executions of that task by the human operators? In other words how robust is the protection envelope? The second issue is: in the absence of a protection envelope, can we approximate a protection envelope encompassing those standard erroneous human behaviors that can be safely endured by the system? We present an extension of Tutela that implements this framework. The two frameworks mentioned above use Concurrent Game Structures (CGS) as models for both computer systems and their human operators. However, there are some shortcomings of this formalism for our uses. We add incomplete information concepts in CGSs to achieve better modularity for the players. We introduce nondeterminism in both the transition system and strategies of players and in the modeling of human operators and computer systems. Nondeterministic action strategies for players in \emph{i}ncomplete information \emph{N}ondeterministic CGS (iNCGS) is a more precise formalism for modeling human behaviors exhibited while operating a computer system. We show how we can reason about a human behavior satisfying a guarantee by providing a semantics of Alternating Time Temporal Logic based on iNCGS player strategies. In a nutshell this dissertation provides formal methodology for modeling and analyzing system robustness against both expected and erroneous human operator behaviors.