8 resultados para Task and ego orientation
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Discusses the approach taken in Phase 1 of a three-phase project Folktales, Facets and FRBR [funded by a grant from OCLC/ALISE]. This project works with the special collection of folktales at the Center for Children’s Books (CCB) at the University of Illinois at Urbana-Champaign, and the scholars who use this collection. The project aims to enhance the effectiveness and efficiency of folktale access through deep understanding of user needs. Phase 1 included facet analysis of the bibliographic records for a sample of 100 folktale books in the CCB, and task analysis of interviews with four CCB-affiliated faculty. Describes the information tasks, information seeking obstacles, and desired features for a discovery and access tool related to folktales for this initial group of scholarly users of folktales.
Resumo:
The coming out process has been conceptualized as a developmental imperative for those who will eventually accept their same-sex attractions. It is widely accepted that homophobia, heterosexism, and homonegativity are cultural realities that may complicate this developmental process for gay men. The current study views coming out as an extra-developmental life task that is at best a stressful event, and at worst traumatic when coming out results in the rupture of salient relationships with parents, siblings, and/or close friends. To date, the minority stress model (Meyer, 1995; 2003) has been utilized as an organizing framework for how to empirically examine external stressors and mental health disparities for lesbians, gay men, and bisexual individuals in the United States. The current study builds on this literature by focusing on the influence of how gay men make sense of and represent the coming out process in a semi-structured interview, more specifically, by examining the legacy of the coming out process on indicators of wellness. In a two-part process, this study first employs the framework well articulated in the adult attachment literature of coherence of narratives to explore both variation and implications of the coming out experience for a sample of gay men (n = 60) in romantic relationships (n = 30). In particular, this study employed constructs identified in the adult attachment literature, namely Preoccupied and Dismissing current state of mind, to code a Coming Out Interview (COI). In the present study current state of mind refers to the degree of coherent discourse produced about coming out experiences as relayed during the COI. Multilevel analyses tested the extent to which these COI dimensions, as revealed through an analysis of coming out narratives in the COI, were associated with relationship quality, including self-reported satisfaction and observed emotional tone in a standard laboratory interaction task and self-reported symptoms of psychopathology. In addition, multilevel analyses also assessed the Acceptance by primary relationship figures at the time of disclosure, as well as the degree of Outness at the time of the study. Results revealed that participant’s narratives on the COI varied with regard to Preoccupied and Dismissing current state of mind, suggesting that the AAI coding system provides a viable organizing framework for extracting meaning from coming out narratives as related to attachment relevant constructs. Multilevel modeling revealed construct validity of the attachment dimensions assessed via the COI; attachment (i.e., Preoccupied and Dismissing current state of mind) as assessed via the Adult Attachment Interview (AAI) was significantly correlated with the corresponding COI variables. These finding suggest both methodological and conceptual convergence between these two measures. However, with one exception, COI Preoccupied and Dismissing current state of mind did not predict relationship outcomes or self-reported internalizing and externalizing symptoms. However, further analyses revealed that the degree to which one is out to others moderated the relationship between COI Preoccupied and internalizing. Specifically, for those who were less out to others, there was a significant and positive relationship between Preoccupied current state of mind towards coming out and internalizing symptoms. In addition, the degree of perceived acceptance of sexual orientation by salient relationship figures at the time of disclosure emerged as a predictor of mental health. In particular, Acceptance was significantly negatively related to internalizing symptoms. Overall, the results offer preliminary support that gay men’s narratives do reflect variation as assessed by attachment dimensions and highlights the role of Acceptance by salient relationship figures at the time of disclosure. Still, for the most part, current state of mind towards coming out in this study was not associated with relationship quality and self-reported indicators of mental health. This finding may be a function of low statistical power given the modest sample size. However, the relationship between Preoccupied current state of mind and mental health (i.e., internalizing) appears to depend on degree of Outness. In addition, the response of primary relationships figures to coming out may be a relevant factor in shaping mental health outcomes for gay men. Limitations and suggestions for future research and clinical intervention are offered.
Resumo:
Single-walled carbon nanotubes (SWNTs) have been studied as a prominent class of high performance electronic materials for next generation electronics. Their geometry dependent electronic structure, ballistic transport and low power dissipation due to quasi one dimensional transport, and their capability of carrying high current densities are some of the main reasons for the optimistic expectations on SWNTs. However, device applications of individual SWNTs have been hindered by uncontrolled variations in characteristics and lack of scalable methods to integrate SWNTs into electronic devices. One relatively new direction in SWNT electronics, which avoids these issues, is using arrays of SWNTs, where the ensemble average may provide uniformity from device to device, and this new breed of electronic material can be integrated into electronic devices in a scalable fashion. This dissertation describes (1) methods for characterization of SWNT arrays, (2) how the electrical transport in these two-dimensional arrays depend on length scales and spatial anisotropy, (3) the interaction of aligned SWNTs with the underlying substrate, and (4) methods for scalable integration of SWNT arrays into electronic devices. The electrical characterization of SWNT arrays have been realized by polymer electrolyte-gated SWNT thin film transistors (TFTs). Polymer electrolyte-gating addresses many technical difficulties inherent to electrical characterization by gating through oxide-dielectrics. Having shown polymer electrolyte-gating can be successfully applied on SWNT arrays, we have studied the length scaling dependence of electrical transport in SWNT arrays. Ultrathin films formed by sub-monolayer surface coverage of SWNT arrays are very interesting systems in terms of the physics of two-dimensional electronic transport. We have observed that they behave qualitatively different than the classical conducting films, which obey the Ohm’s law. The resistance of an ultrathin film of SWNT arrays is indeed non-linear with the length of the film, across which the transport occurs. More interestingly, a transition between conducting and insulating states is observed at a critical surface coverage, which is called percolation limit. The surface coverage of conducting SWNTs can be manipulated by turning on and off the semiconductors in the SWNT array, leading to the operation principle of SWNT TFTs. The percolation limit depends also on the length and the spatial orientation of SWNTs. We have also observed that the percolation limit increases abruptly for aligned arrays of SWNTs, which are grown on single crystal quartz substrates. In this dissertation, we also compare our experimental results with a two-dimensional stick network model, which gives a good qualitative picture of the electrical transport in SWNT arrays in terms of surface coverage, length scaling, and spatial orientation, and briefly discuss the validity of this model. However, the electronic properties of SWNT arrays are not only determined by geometrical arguments. The contact resistances at the nanotube-nanotube and nanotube-electrode (bulk metal) interfaces, and interactions with the local chemical groups and the underlying substrates are among other issues related to the electronic transport in SWNT arrays. Different aspects of these factors have been studied in detail by many groups. In fact, I have also included a brief discussion about electron injection onto semiconducting SWNTs by polymer dopants. On the other hand, we have compared the substrate-SWNT interactions for isotropic (in two dimensions) arrays of SWNTs grown on Si/SiO2 substrates and horizontally (on substrate) aligned arrays of SWNTs grown on single crystal quartz substrates. The anisotropic interactions associated with the quartz lattice between quartz and SWNTs that allow near perfect horizontal alignment on substrate along a particular crystallographic direction is examined by Raman spectroscopy, and shown to lead to uniaxial compressive strain in as-grown SWNTs on single crystal quartz. This is the first experimental demonstration of the hard-to-achieve uniaxial compression of SWNTs. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is non-uniform and can be larger than 1% locally at room temperature. Effects of device fabrication steps on the non-uniform strain are also examined and implications on electrical performance are discussed. Based on our findings, there are discussions about device performances and designs included in this dissertation. The channel length dependences of device mobilities and on/off ratios are included for SWNT TFTs. Time response of polymer-electrolyte gated SWNT TFTs has been measured to be ~300 Hz, and a proof-of-concept logic inverter has been fabricated by using polymer electrolyte gated SWNT TFTs for macroelectronic applications. Finally, I dedicated a chapter on scalable device designs based on aligned arrays of SWNTs, including a design for SWNT memory devices.
Resumo:
This dissertation investigates the acquisition of oblique relative clauses in L2 Spanish by English and Moroccan Arabic speakers in order to understand the role of previous linguistic knowledge and its interaction with Universal Grammar on the one hand, and the relationship between grammatical knowledge and its use in real-time, on the other hand. Three types of tasks were employed: an oral production task, an on-line self-paced grammaticality judgment task, and an on-line self-paced reading comprehension task. Results indicated that the acquisition of oblique relative clauses in Spanish is a problematic area for second language learners of intermediate proficiency in the language, regardless of their native language. In particular, this study has showed that, even when the learners’ native language shares the main properties of the L2, i.e., fronting of the obligatory preposition (Pied-Piping), there is still room for divergence, especially in production and timed grammatical intuitions. On the other hand, reaction time data have shown that L2 learners can and do converge at the level of sentence processing, showing exactly the same real-time effects for oblique relative clauses that native speakers had. Processing results demonstrated that native and non-native speakers alike are able to apply universal processing principles such as the Minimal Chain Principle (De Vincenzi, 1991) even when the L2 learners still have incomplete grammatical representations, a result that contradicts some of the predictions of the Shallow Structure Hypothesis (Clahsen & Felser, 2006). Results further suggest that the L2 processing and comprehension domains may be able to access some type of information that it is not yet available to other grammatical modules, probably because transfer of certain L1 properties occurs asymmetrically across linguistic domains. In addition, this study also explored the Null-Prep phenomenon in L2 Spanish, and proposed that Null-Prep is an interlanguage stage, fully available and accounted within UG, which intermediate L2 as well as first language learners go through in the development of pied-piping oblique relative clauses. It is hypothesized that this intermediate stage is the result of optionality of the obligatory preposition in the derivation, when it is not crucial for the meaning of the sentence, and when the DP is going to be in an A-bar position, so it can get default case. This optionality can be predicted by the Bottleneck Hypothesis (Slabakova, 2009c) if we consider that these prepositions are some sort of functional morphology. This study contributes to the field of SLA and L2 processing in various ways. First, it demonstrates that the grammatical representations may be dissociated from grammatical processing in the sense that L2 learners, unlike native speakers, can present unexpected asymmetries such as a convergent processing but divergent grammatical intuitions or production. This conclusion is only possible under the assumption of a modular language system. Finally, it contributes to the general debate of generative SLA since in argues for a fully UG-constrained interlanguage grammar.
Resumo:
In the present study, Korean-English bilingual (KEB) and Korean monolingual (KM) children, between the ages of 8 and 13 years, and KEB adults, ages 18 and older, were examined with one speech perception task, called the Nonsense Syllable Confusion Matrix (NSCM) task (Allen, 2005), and two production tasks, called the Nonsense Syllable Imitation Task (NSIT) and the Nonword Repetition Task (NRT; Dollaghan & Campbell, 1998). The present study examined (a) which English sounds on the NSCM task were identified less well, presumably due to interference from Korean phonology, in bilinguals learning English as a second language (L2) and in monolinguals learning English as a foreign language (FL); (b) which English phonemes on the NSIT were more challenging for bilinguals and monolinguals to produce; (c) whether perception on the NSCM task is related to production on the NSIT, or phonological awareness, as measured by the NRT; and (d) whether perception and production differ in three age-language status groups (i.e., KEB children, KEB adults, and KM children) and in three proficiency subgroups of KEB children (i.e., English-dominant, ED; balanced, BAL; and Korean-dominant, KD). In order to determine English proficiency in each group, language samples were extensively and rigorously analyzed, using software, called Systematic Analysis of Language Transcripts (SALT). Length of samples in complete and intelligible utterances, number of different and total words (NDW and NTW, respectively), speech rate in words per minute (WPM), and number of grammatical errors, mazes, and abandoned utterances were measured and compared among the three initial groups and the three proficiency subgroups. Results of the language sample analysis (LSA) showed significant group differences only between the KEBs and the KM children, but not between the KEB children and adults. Nonetheless, compared to normative means (from a sample length- and age-matched database provided by SALT), the KEB adult group and the KD subgroup produced English at significantly slower speech rates than expected for monolingual, English-speaking counterparts. Two existing models of bilingual speech perception and production—the Speech Learning Model or SLM (Flege, 1987, 1992) and the Perceptual Assimilation Model or PAM (Best, McRoberts, & Sithole, 1988; Best, McRoberts, & Goodell, 2001)—were considered to see if they could account for the perceptual and production patterns evident in the present study. The selected English sounds for stimuli in the NSCM task and the NSIT were 10 consonants, /p, b, k, g, f, θ, s, z, ʧ, ʤ/, and 3 vowels /I, ɛ, æ/, which were used to create 30 nonsense syllables in a consonant-vowel structure. Based on phonetic or phonemic differences between the two languages, English sounds were categorized either as familiar sounds—namely, English sounds that are similar, but not identical, to L1 Korean, including /p, k, s, ʧ, ɛ/—or unfamiliar sounds—namely, English sounds that are new to L1, including /b, g, f, θ, z, ʤ, I, æ/. The results of the NSCM task showed that (a) consonants were perceived correctly more often than vowels, (b) familiar sounds were perceived correctly more often than unfamiliar ones, and (c) familiar consonants were perceived correctly more often than unfamiliar ones across the three age-language status groups and across the three proficiency subgroups; and (d) the KEB children perceived correctly more often than the KEB adults, the KEB children and adults perceived correctly more often than the KM children, and the ED and BAL subgroups perceived correctly more often than the KD subgroup. The results of the NSIT showed (a) consonants were produced more accurately than vowels, and (b) familiar sounds were produced more accurately than unfamiliar ones, across the three age-language status groups. Also, (c) familiar consonants were produced more accurately than unfamiliar ones in the KEB and KM child groups, and (d) unfamiliar vowels were produced more accurately than a familiar one in the KEB child group, but the reverse was true in the KEB adult and KM child groups. The KEB children produced sounds correctly significantly more often than the KM children and the KEB adults, though the percent correct differences were smaller than for perception. Production differences were not found among the three proficiency subgroups. Perception on the NSCM task was compared to production on the NSIT and NRT. Weak positive correlations were found between perception and production (NSIT) for unfamiliar consonants and sounds, whereas a weak negative correlation was found for unfamiliar vowels. Several correlations were significant for perceptual performance on the NSCM task and overall production performance on the NRT: for unfamiliar consonants, unfamiliar vowels, unfamiliar sounds, consonants, vowels, and overall performance on the NSCM task. Nonetheless, no significant correlation was found between production on the NSIT and NRT. Evidently these are two very different production tasks, where immediate imitation of single syllables on the NSIT results in high performance for all groups. Findings of the present study suggest that (a) perception and production of L2 consonants differ from those of vowels; (b) perception and production of L2 sounds involve an interaction of sound type and familiarity; (c) a weak relation exists between perception and production performance for unfamiliar sounds; and (d) L2 experience generally predicts perceptual and production performance. The present study yields several conclusions. The first is that familiarity of sounds is an important influence on L2 learning, as claimed by both SLM and PAM. In the present study, familiar sounds were perceived and produced correctly more often than unfamiliar ones in most cases, in keeping with PAM, though experienced L2 learners (i.e., the KEB children) produced unfamiliar vowels better than familiar ones, in keeping with SLM. Nonetheless, the second conclusion is that neither SLM nor PAM consistently and thoroughly explains the results of the present study. This is because both theories assume that the influence of L1 on the perception of L2 consonants and vowels works in the same way as for production of them. The third and fourth conclusions are two proposed arguments: that perception and production of consonants are different than for vowels, and that sound type interacts with familiarity and L2 experience. These two arguments can best explain the current findings. These findings may help us to develop educational curricula for bilingual individuals listening to and articulating English. Further, the extensive analysis of spontaneous speech in the present study should contribute to the specification of parameters for normal language development and function in Korean-English bilingual children and adults.
Resumo:
Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self- healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.
Resumo:
The philosophy of minimalism in robotics promotes gaining an understanding of sensing and computational requirements for solving a task. This minimalist approach lies in contrast to the common practice of first taking an existing sensory motor system, and only afterwards determining how to apply the robotic system to the task. While it may seem convenient to simply apply existing hardware systems to the task at hand, this design philosophy often proves to be wasteful in terms of energy consumption and cost, along with unnecessary complexity and decreased reliability. While impressive in terms of their versatility, complex robots such as the PR2 (which cost hundreds of thousands of dollars) are impractical for many common applications. Instead, if a specific task is required, sensing and computational requirements can be determined specific to that task, and a clever hardware implementation can be built to accomplish the task. Since this minimalist hardware would be designed around accomplishing the specified task, significant reductions in hardware complexity can be obtained. This can lead to huge advantages in battery life, cost, and reliability. Even if cost is of no concern, battery life is often a limiting factor in many applications. Thus, a minimalist hardware system is critical in achieving the system requirements. In this thesis, we will discuss an implementation of a counting, tracking, and actuation system as it relates to ergodic bodies to illustrate a minimalist design methodology.
Resumo:
This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.