3 resultados para State space model
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Reliability and dependability modeling can be employed during many stages of analysis of a computing system to gain insights into its critical behaviors. To provide useful results, realistic models of systems are often necessarily large and complex. Numerical analysis of these models presents a formidable challenge because the sizes of their state-space descriptions grow exponentially in proportion to the sizes of the models. On the other hand, simulation of the models requires analysis of many trajectories in order to compute statistically correct solutions. This dissertation presents a novel framework for performing both numerical analysis and simulation. The new numerical approach computes bounds on the solutions of transient measures in large continuous-time Markov chains (CTMCs). It extends existing path-based and uniformization-based methods by identifying sets of paths that are equivalent with respect to a reward measure and related to one another via a simple structural relationship. This relationship makes it possible for the approach to explore multiple paths at the same time,· thus significantly increasing the number of paths that can be explored in a given amount of time. Furthermore, the use of a structured representation for the state space and the direct computation of the desired reward measure (without ever storing the solution vector) allow it to analyze very large models using a very small amount of storage. Often, path-based techniques must compute many paths to obtain tight bounds. In addition to presenting the basic path-based approach, we also present algorithms for computing more paths and tighter bounds quickly. One resulting approach is based on the concept of path composition whereby precomputed subpaths are composed to compute the whole paths efficiently. Another approach is based on selecting important paths (among a set of many paths) for evaluation. Many path-based techniques suffer from having to evaluate many (unimportant) paths. Evaluating the important ones helps to compute tight bounds efficiently and quickly.
Resumo:
This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.
Resumo:
This dissertation research points out major challenging problems with current Knowledge Organization (KO) systems, such as subject gateways or web directories: (1) the current systems use traditional knowledge organization systems based on controlled vocabulary which is not very well suited to web resources, and (2) information is organized by professionals not by users, which means it does not reflect intuitively and instantaneously expressed users’ current needs. In order to explore users’ needs, I examined social tags which are user-generated uncontrolled vocabulary. As investment in professionally-developed subject gateways and web directories diminishes (support for both BUBL and Intute, examined in this study, is being discontinued), understanding characteristics of social tagging becomes even more critical. Several researchers have discussed social tagging behavior and its usefulness for classification or retrieval; however, further research is needed to qualitatively and quantitatively investigate social tagging in order to verify its quality and benefit. This research particularly examined the indexing consistency of social tagging in comparison to professional indexing to examine the quality and efficacy of tagging. The data analysis was divided into three phases: analysis of indexing consistency, analysis of tagging effectiveness, and analysis of tag attributes. Most indexing consistency studies have been conducted with a small number of professional indexers, and they tended to exclude users. Furthermore, the studies mainly have focused on physical library collections. This dissertation research bridged these gaps by (1) extending the scope of resources to various web documents indexed by users and (2) employing the Information Retrieval (IR) Vector Space Model (VSM) - based indexing consistency method since it is suitable for dealing with a large number of indexers. As a second phase, an analysis of tagging effectiveness with tagging exhaustivity and tag specificity was conducted to ameliorate the drawbacks of consistency analysis based on only the quantitative measures of vocabulary matching. Finally, to investigate tagging pattern and behaviors, a content analysis on tag attributes was conducted based on the FRBR model. The findings revealed that there was greater consistency over all subjects among taggers compared to that for two groups of professionals. The analysis of tagging exhaustivity and tag specificity in relation to tagging effectiveness was conducted to ameliorate difficulties associated with limitations in the analysis of indexing consistency based on only the quantitative measures of vocabulary matching. Examination of exhaustivity and specificity of social tags provided insights into particular characteristics of tagging behavior and its variation across subjects. To further investigate the quality of tags, a Latent Semantic Analysis (LSA) was conducted to determine to what extent tags are conceptually related to professionals’ keywords and it was found that tags of higher specificity tended to have a higher semantic relatedness to professionals’ keywords. This leads to the conclusion that the term’s power as a differentiator is related to its semantic relatedness to documents. The findings on tag attributes identified the important bibliographic attributes of tags beyond describing subjects or topics of a document. The findings also showed that tags have essential attributes matching those defined in FRBR. Furthermore, in terms of specific subject areas, the findings originally identified that taggers exhibited different tagging behaviors representing distinctive features and tendencies on web documents characterizing digital heterogeneous media resources. These results have led to the conclusion that there should be an increased awareness of diverse user needs by subject in order to improve metadata in practical applications. This dissertation research is the first necessary step to utilize social tagging in digital information organization by verifying the quality and efficacy of social tagging. This dissertation research combined both quantitative (statistics) and qualitative (content analysis using FRBR) approaches to vocabulary analysis of tags which provided a more complete examination of the quality of tags. Through the detailed analysis of tag properties undertaken in this dissertation, we have a clearer understanding of the extent to which social tagging can be used to replace (and in some cases to improve upon) professional indexing.