2 resultados para Short circuit in stator
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and assessing their selectivity in separating metallic and semiconducting SWNTs. Chapter 4 describes how optical phonon population extinction lifetime is affected by covalent functionalization and doping and includes discussions on static Raman linewidths. Increasing defect concentration is shown to decrease G-band phonon population lifetime and increase G-band linewidth. Doping only increases G-band linewidth, leaving non-equilibrium population decay rate unaffected. Phonon mediated electron scattering is especially strong in nanotubes making optical phonon decay of interest for device applications. Optical phonon decay also has implications on device thermal management. Chapter 5 treats doping of graphene showing ambient air can lead to inadvertent Fermi level shifts which exemplifies the sensitivity that sp2-bonded carbon nanostructures have to chemical doping through sidewall adsorption. Removal of this doping allows for an investigation of electron-phonon coupling dependence on temperature, also of interest for devices operating above room temperature. Finally, in Chapter 6, utilizing the information obtained in previous chapters, single carbon nanotube diodes are fabricated and characterized. Electrical performance shows these diodes are nearly ideal and photovoltaic response yields 1.4 nA and 205 mV of short circuit current and open circuit voltage from a single nanotube device. A summary and discussion of future directions in Chapter 7 concludes my work.
Resumo:
The Czech composer Petr Eben (1927-2007) has written music in all genres except symphony, but he is highly recognized for his organ and choral compositions, which are his preferred genres. His vocal works include choral songs and vocal-instrumental works at a wide range of difficulty levels, from simple pedagogical songs to very advanced and technically challenging compositions. This study examines two of Eben‘s vocal-instrumental compositions. The oratorio Apologia Sokratus (1967) is a three-movement work; its libretto is based on Plato‘s Apology of Socrates. The ballet Curses and Blessings (1983) has a libretto compiled from numerous texts from the thirteenth to the twentieth centuries. The formal design of the ballet is unusual—a three-movement composition where the first is choral, the second is orchestral, and the third combines the previous two played simultaneously. Eben assembled the libretti for both compositions and they both address the contrasting sides of the human soul, evil and good, and the everlasting fight between them. This unity and contrast is the philosophical foundation for both compositions. The dissertation discusses the multileveled meanings behind the text settings and musical style of the oratorio and ballet in analyses focusing on the text, melodic and harmonic construction, and symbolism. Additional brief analyses of other vocal and vocal-instrumental compositions by Eben establish the ground for the examination of the oratorio and ballet and for understanding features of the composer‘s musical style. While the oratorio Apologia Sokratus was discussed in short articles in the 1970s, the ballet Curses and Blessings has never previously been addressed within Eben scholarship. The dissertation examines the significant features of Eben‘s music. His melodic style incorporates influences as diverse as Gregorian chant and folk tunes on the one hand, and modern vocal techniques such as Sprechgesang and vocal aleatoricism on the other. His harmonic language includes bitonality and polytonality, used to augment the tonal legacy of earlier times, together with elements of pitch collections and limited serial procedures as well as various secundal and quartal harmonic sonorities derived from them. His music features the vibrant rhythms of folk music, and incorporates other folk devices like ostinato, repetitive patterns, and improvisation.