2 resultados para Shedding of leaves

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metabolism in an environment containing of 21% oxygen has a high risk of oxidative damage due to the formation of reactive oxygen species. Therefore, plants have evolved an antioxidant system consisting of metabolites and enzymes that either directly scavenge ROS or recycle the antioxidant metabolites. Ozone is a temporally dynamic molecule that is both naturally occurring as well as an environmental pollutant that is predicted to increase in concentration in the future as anthropogenic precursor emissions rise. It has been hypothesized that any elevation in ozone concentration will cause increased oxidative stress in plants and therefore enhanced subsequent antioxidant metabolism, but evidence for this response is variable. Along with increasing atmospheric ozone concentrations, atmospheric carbon dioxide concentration is also rising and is predicted to continue rising in the future. The effect of elevated carbon dioxide concentrations on antioxidant metabolism varies among different studies in the literature. Therefore, the question of how antioxidant metabolism will be affected in the most realistic future atmosphere, with increased carbon dioxide concentration and increased ozone concentration, has yet to be answered, and is the subject of my thesis research. First, in order to capture as much of the variability in the antioxidant system as possible, I developed a suite of high-throughput quantitative assays for a variety of antioxidant metabolites and enzymes. I optimized these assays for Glycine max (soybean), one of the most important food crops in the world. These assays provide accurate, rapid and high-throughput measures of both the general and specific antioxidant action of plant tissue extracts. Second, I investigated how growth at either elevated carbon dioxide concentration or chronic elevated ozone concentration altered antioxidant metabolism, and the ability of soybean to respond to an acute oxidative stress in a controlled environment study. I found that growth at chronic elevated ozone concentration increased the antioxidant capacity of leaves, but was unchanged or only slightly increased following an acute oxidative stress, suggesting that growth at chronic elevated ozone concentration primed the antioxidant system. Growth at high carbon dioxide concentration decreased the antioxidant capacity of leaves, increased the response of the existing antioxidant enzymes to an acute oxidative stress, but dampened and delayed the transcriptional response, suggesting an entirely different regulation of the antioxidant system. Third, I tested the findings from the controlled environment study in a field setting by investigating the response of the soybean antioxidant system to growth at elevated carbon dioxide concentration, chronic elevated ozone concentration and the combination of elevated carbon dioxide concentration and elevated ozone concentration. In this study, I confirmed that growth at elevated carbon dioxide concentration decreased specific components of antioxidant metabolism in the field. I also verified that increasing ozone concentration is highly correlated with increases in the metabolic and genomic components of antioxidant metabolism, regardless of carbon dioxide concentration environment, but that the response to increasing ozone concentration was dampened at elevated carbon dioxide concentration. In addition, I found evidence suggesting an up regulation of respiratory metabolism at higher ozone concentration, which would supply energy and carbon for detoxification and repair of cellular damage. These results consistently support the conclusion that growth at elevated carbon dioxide concentration decreases antioxidant metabolism while growth at elevated ozone concentration increases antioxidant metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The engineering of liquid behavior on surfaces is important for infrastructure, transportation, manufacturing, and sensing. Surfaces can be rendered superhydrophobic by microstructuring, and superhydrophobic devices could lead to practical corrosion inhibition, self-cleaning, fluid flow control, and surface drag reduction. To more fully understand how liquid interacts with microstructured surfaces, this dissertation introduces a direct method for determining droplet solid-liquid-vapor interfacial geometry on microstructured surfaces. The technique performs metrology on molten metal droplets deposited onto microstructured surfaces and then frozen. Unlike other techniques, this visualization technique can be used on large areas of curved and opaque microstructured surfaces to determine contact line. This dissertation also presents measurements and models for how curvature and flexing of microstructured polymers affects hydrophobicity. Increasing curvature of microstructured surfaces leads to decreased slide angle for liquid droplets suspended on the surface asperities. For a surface with regularly spaced asperities, as curvature becomes more positive, droplets suspended on the tops of asperities are suspended on fewer asperities. Curvature affects superhydrophobicity because microscopic curvature changes solid-liquid interaction, pitch is altered, and curvature changes the shape of the three phase contact line. This dissertation presents a model of droplet interactions with curved microstructured surfaces that can be used to design microstructure geometries that maintain the suspension of a droplet when curved surfaces are covered with microstructured polymers. Controlling droplet dynamics could improve microfluidic devices and the shedding of liquids from expensive equipment, preventing corrosion and detrimental performance. This dissertation demonstrates redirection of dynamic droplet spray with anisotropic microstructures. Superhydrophobic microstructured surfaces can be economically fabricated using metal embossing masters, so this dissertation describes casting-based microfabrication of metal microstructures and nanostructures. Low melting temperature metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. The flexibility of the silicone mold permits casting of curved surfaces, which this dissertation demonstrates by fabricating a cylindrical metal roller with microstructures. The metal microstructures can be in turn used as a reusable molding tool. This dissertation also describes an industrial investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast into curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square, and triangular holes. This dissertation demonstrates molding of large, curved surfaces having surface microstructures using the aluminum mold. This work contributes a more full understanding of the phenomenon of superhydrophobicity and techniques for the economic fabrication of superhydrophobic microstructures.