3 resultados para Self- awareness and auto-referentiality
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Self-assembled materials produced in the reaction between alkanethiol and Ag are characterized and compared. It is revealed that the size of the Ag substrate has a significant role in the self-assembly process and determines the reaction products. Alkanethiol adsorbs on the surface of Ag continuous planar thin films and only forms self-assembled monolayers (SAMs), while the reaction between alkanethiol and Ag clusters on inert surfaces is more aggressive and generates a significantly larger amount of alkanethiolate. Two dissimilar products are yielded depending on the size of the clusters. Small Ag clusters are more likely to be converted into multilayer silver-alkanethiolate (AgSR, R = CnH2n+1) crystals, while larger Ag clusters form monolayer-protected clusters (MPCs). The AgSR crystals are initially small and can ripen into large lamellae during thermal annealing. The crystals have facets and flat terraces with extended area, and have a strong preferred orientation in parallel with the substrate surface. The MPCs move laterally upon annealing and reorganize into a single-layer network with their separation distance approximately equal to the length of an extended alkyl chain. AgSR lamellar crystals grown on inert surfaces provide an excellent platform to study the melting characteristics of crystalline lamellae of polymeric materials with the thickness in the nanometer scale. This system is also unique in that each crystal has integer number of layers – magic-number size (thickness). The size of the crystals is controlled by adjusting the amount of Ag and the annealing temperature. X-ray diffraction (XRD) and atomic force microscopy (AFM) are combined to accurately determine the size (number of layers) of the lamellar crystals. The melting characteristics are measured with nanocalorimetry and show discrete melting transitions which are attributed to the magic-number sizes of the lamellar crystals. The discrete melting temperatures are intrinsic properties of the crystals with particular sizes. Smaller lamellar crystals with less number of layers melt at lower temperatures. The melting point depression is inversely proportional to the total thickness of the lamellae – the product of the number of layers and the layer thickness.
Resumo:
The present study examined the effect of learning to read a heritage language on Taiwanese Mandarin-English bilingual children’s Chinese and English phonological awareness, Chinese and English oral language proficiency, and English reading skills. Participants were 40 Taiwanese Mandarin-English bilingual children and 20 English monolingual children in the U.S. Based on their performance on a Chinese character reading test, the bilingual participants were divided into two groups: the Chinese Beginning Reader and Chinese Nonreader groups. A single child categorized as a Chinese Advanced Reader also participated. Children received phonological awareness tasks, produced oral narrative samples from a wordless picture book, and took standardized English reading subtests. The bilingual participants received measures in both English and Chinese, whereas English monolingual children received only English measures. Additional demographic information was collected from a language background survey filled out by parents. Results of two MANOVAs indicated that the Chinese Beginning Reader group outperformed the Chinese Nonreader and English Monolingual groups on some phonological awareness measures and the English nonword reading test. In an oral narrative production task in English, the English Monolingual group produced a greater total number of words (TNW) and more different words (NDW) than the Chinese Nonreader group. Multiple regression analyses were conducted to determine whether bilingual children’s Chinese character reading ability would still account for a unique amount of variance in certain outcome variables, independent of nonverbal IQ and other potential demographic or performance variables and to clarify the direction of causality for bilingual children’s performance in the three domains. These results suggested that learning to read in a heritage language directly or indirectly enhances bilingual children’s ability in phonological awareness and certain English reading skills. It also appears that greater oral language proficiency in Chinese promotes early reading in the heritage language. Advanced heritage reading may produce even larger gains. Practical implications of learning a heritage language in the U.S. are discussed.
Resumo:
Fiber reinforced composite tanks provide a promising method of storage for liquid oxygen and hydrogen for aerospace applications. The inherent thermal fatigue of these vessels leads to the formation of microcracks, which allow gas phase leakage across the tank walls. In this dissertation, self-healing functionality is imparted to a structural composite to effectively seal microcracks induced by both mechanical and thermal loading cycles. Two different microencapsulated healing chemistries are investigated in woven glass fiber/epoxy and uni-weave carbon fiber/epoxy composites. Self-healing of mechanically induced damage was first studied in a room temperature cured plain weave E-glass/epoxy composite with encapsulated dicyclopentadiene (DCPD) monomer and wax protected Grubbs' catalyst healing components. A controlled amount of microcracking was introduced through cyclic indentation of opposing surfaces of the composite. The resulting damage zone was proportional to the indentation load. Healing was assessed through the use of a pressure cell apparatus to detect nitrogen flow through the thickness direction of the damaged composite. Successful healing resulted in a perfect seal, with no measurable gas flow. The effect of DCPD microcapsule size (51 um and 18 um) and concentration (0 - 12.2 wt%) on the self-sealing ability was investigated. Composite specimens with 6.5 wt% 51 um capsules sealed 67% of the time, compared to 13% for the control panels without healing components. A thermally stable, dual microcapsule healing chemistry comprised of silanol terminated poly(dimethyl siloxane) plus a crosslinking agent and a tin catalyst was employed to allow higher composite processing temperatures. The microcapsules were incorporated into a satin weave E-glass fiber/epoxy composite processed at 120C to yield a glass transition temperature of 127C. Self-sealing ability after mechanical damage was assessed for different microcapsule sizes (25 um and 42 um) and concentrations (0 - 11 vol%). Incorporating 9 vol% 42 um capsules or 11 vol% 25 um capsules into the composite matrix leads to 100% of the samples sealing. The effect of microcapsule concentration on the short beam strength, storage modulus, and glass transition temperature of the composite specimens was also investigated. The thermally stable tin catalyzed poly(dimethyl siloxane) healing chemistry was then integrated into a [0/90]s uniweave carbon fiber/epoxy composite. Thermal cycling (-196C to 35C) of these specimens lead to the formation of microcracks, over time, formed a percolating crack network from one side of the composite to the other, resulting in a gas permeable specimen. Crack damage accumulation and sample permeability was monitored with number of cycles for both self-healing and traditional non-healing composites. Crack accumulation occurred at a similar rate for all sample types tested. A 63% increase in lifetime extension was achieved for the self-healing specimens over traditional non-healing composites.