2 resultados para Random effect model

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The processing of meats at the factory level can trigger the onset of lipid oxidation, which can lead to meat quality deterioration. Warmed over flavor is an off-flavor, which is associated with oxidative deterioration in meat. To avoid or delay the auto-oxidation process in meat products, synthetic and natural antioxidants have been successfully used. Grape (Vitis Vinifera) is of special interest due to its high content of phenolic compounds. Grape seed extract sold commercially as a dietary supplement, has the potential to reduce lipid oxidation and WOF in cooked ground beef when added at 1%. The objective of study 1 was to compare the antioxidant activity of natural antioxidants including grape seed extract and some herbs belonging to the Lamiaciae family: rosemary (Rosmarinus Officinalis), sage (Salvia Officinalis) and oregano (Origanum Vulgare) with commercial synthetic antioxidants like BHT, BHA, propyl gallate and ascorbic acid using the ORAC assay. All sample solutions were prepared to contain 1.8 gm sample/10 ml solvent. The highest antioxidant activity was observed for the grape seed extract sample (359.75 µM TE), while the lowest was observed for BHA, propyl gallate and rosemary also showed higher antioxidant potential with ORAC values above 300 μmol TE/g. ORAC values obtained for ascorbic acid and Sage were between 250-300μ mol TE/g while lowest values were obtained for Butylated Hydroxytoluene (28.50 µM TE). Based on the high ORAC values obtained for grape seed extract, we can conclude that byproducts of the wine/grape industry have antioxidant potential comparable to or better than those present in synthetic counterparts. The objective of study 2 was to compare three levels of grape seed extract (GSE) to commonly used antioxidants in a pre-cooked, frozen, stored beef and pork sausage model system. Antioxidants added for comparison with control included grape seed extract (100, 300, 500 ppm), ascorbic acid (AA, 100 ppm of fat) and propyl gallate (PG, 100 ppm of fat). Product was formed into rolls, frozen, sliced into patties, cooked on a flat griddle to 70C, overwrapped in PVC, and then frozen at –18C for 4 months. GSE- and PG-containing samples retained their fresh cooked beef odor and flavor longer (p<0.05) than controls during storage. Rancid odor and flavor scores of GSE-containing samples were lower (p<0.05) than those of controls after 4 months of storage. The L* value of all samples increased (p<0.05) during storage. Thiobarbituric acid reactive substances (TBARS) of the control and AA-containing samples increased (p<0.05); those of GSE-containing samples did not change significantly (p>0.05) over the storage period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the effects of chemotaxis and steric interactions in active suspensions are analyzed by extending the kinetic model proposed by Saintillan and Shelley [1, 2]. In this model, a conservation equation for the active particle configuration is coupled to the Stokes equation for the flow arising from the force dipole exerted by the particles on the fluid. The fluid flow equations are solved spectrally and the conservation equation is solved by second-order finite differencing in space and second-order Adams-Bashforth time marching. First, the dynamics in suspensions of oxytactic run-and-tumble bacteria confined in thin liquid films surrounded by air is investigated. These bacteria modify their tumbling behavior by making temporal comparisons of the oxygen concentration, and, on average, swim towards high concentrations of oxygen. The kinetic model proposed by Saintillan and Shelley [1, 2] is modified to include run-and-tumble effects and oxygentaxis. The spatio-temporal dynamics of the oxygen and bacterial concentration are analyzed. For small film thicknesses, there is a weak migration of bacteria to the boundaries, and the oxygen concentration is high inside the film as a result of diffusion; both bacterial and oxygen concentrations quickly reach steady states. Above a critical film thickness (approximately 200 micron), a transition to chaotic dynamics is observed and is characterized by turbulent-like 3D motion, the formation of bacterial plumes, enhanced oxygen mixing and transport into the film, and hydrodynamic velocities of magnitudes up to 7 times the single bacterial swimming speed. The simulations demonstrate that the combined effects of hydrodynamic interactions and oxygentaxis create collective three-dimensional instabilities which enhances oxygen availability for the bacteria. Our simulation results are consistent with the experimental findings of Sokolov et al. [3], who also observed a similar transition with increasing film thickness. Next, the dynamics in concentrated suspensions of active self-propelled particles in a 3D periodic domain are analyzed. We modify the kinetic model of Saintillan and Shelley [1, 2] by including an additional nematic alignment torque proportional to the local concentration in the equation for the rotational velocity of the particles, causing them to align locally with their neighbors (Doi and Edwards [4]). Large-scale three- dimensional simulations show that, in the presence of such a torque both pusher and puller suspensions are unstable to random fluctuations and are characterized by highly nematic structures. Detailed measures are defined to quantify the degree and direction of alignment, and the effects of steric interactions on pattern formation will be presented. Our analysis shows that steric interactions have a destabilizing effect in active suspensions.