2 resultados para Quality levels

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt use in meat products is changing. Consumers desire sea salt which may also contain trace metals and the government is demanding a reduction in sodium. Therefore a need exists to understand how varying impurity levels in salt affect meat quality. This study evaluated the effects of various salt preparations on lipid oxidation, sensory characteristics, protein extractability, and bind strength of ground turkey and pork. This study was a completely randomized design with 5 treatment groups and 6 replications in 2 species. Ground, turkey and pork meat was formulated into one hundred and fifty gram patties with sodium chloride (1%) containing varying amounts of metal impurities (copper, iron, and manganese). Samples were randomly assigned to frozen storage periods of 0, 3, 6, and 9 weeks. After storage, samples were packaged in PVC overwrap and stored under retail display for 5 days. Samples were evaluated for proximate analysis to ensure the fat content was similar for all of the starting material.Thiobarbituric acid reactive substances (TBARS) were determined on raw and cooked samples to evaluate lipid oxidation. A trained six member sensory panel evaluated the samples at each storage period for saltiness, off flavor, and oxidized odor. Break strength was conducted using a Texture Analyzer and compared with salt soluble proteins (increasing salt concentrations) to evaluate protein extractability characteristics. Statistical analyses were conducted using the MIXED procedure of SAS within repeated measures over time where appropriate. No significant differences were observed among the salt treatments for raw and cooked TBARS when the control group was removed (P>0.05). Sensory panelists detected increased levels of off flavor and oxidized odor over the entire storage duration. Less force was required to break the patties from the control group when compared with the salt treatments (P<0.05). As salt concentration increased salt-soluble protein extraction increased, but there was no effect of salt type. Overall, no meaningful statistical differences among the various salt treatments were observed for all of the parameters evaluated for turkey and pork. Salt at a 1% inclusion rate containing varying levels of copper, iron, and manganese impurities in ground turkey thigh meat and ground pork served as a prooxidant. However, if a meat processor uses a 1% inclusion rate of salt in turkey and pork regardless of impurities included, it is unlikely that differences in shelf life or protein functionality would be observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.