2 resultados para Quality factor meters
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Biochemical agents, including bacteria and toxins, are potentially dangerous and responsible for a wide variety of diseases. Reliable detection and characterization of small samples is necessary in order to reduce and eliminate their harmful consequences. Microcantilever sensors offer a potential alternative to the state of the art due to their small size, fast response time, and the ability to operate in air and liquid environments. At present, there are several technology limitations that inhibit application of microcantilever to biochemical detection and analysis, including difficulties in conducting temperature-sensitive experiments, material inadequacy resulting in insufficient cell capture, and poor selectivity of multiple analytes. This work aims to address several of these issues by introducing microcantilevers having integrated thermal functionality and by introducing nanocrystalline diamond as new material for microcantilevers. Microcantilevers are designed, fabricated, characterized, and used for capture and detection of cells and bacteria. The first microcantilever type described in this work is a silicon cantilever having highly uniform in-plane temperature distribution. The goal is to have 100 μm square uniformly heated area that can be used for thermal characterization of films as well as to conduct chemical reactions with small amounts of material. Fabricated cantilevers can reach above 300C while maintaining temperature uniformity of 2−4%. This is an improvement of over one order of magnitude over currently available cantilevers. The second microcantilever type is a doped single crystal silicon cantilever having a thin coating of ultrananocrystalline diamond (UNCD). The primary application of such a device is in biological testing, where diamond acts as a stable, electrically isolated reaction surface while silicon layer provides controlled heating with minimum variations in temperature. This work shows that composite cantilevers of this kind are an effective platform for temperature-sensitive biological experiments, such as heat lysing and polymerase chain reaction. The rapid heat-transfer of Si-UNCD cantilever compromised the membrane of NIH 3T3 fibroblast and lysed the cell nucleus within 30 seconds. Bacteria cells, Listeria monocytogenes V7, were shown to be captured with biotinylated heat-shock protein on UNCD surface and 90% of all viable cells exhibit membrane porosity due to high heat in 15 seconds. Lastly, a sensor made solely from UNCD diamond is fabricated with the intention of being used to detect the presence of biological species by means of an integrated piezoresistor or through frequency change monitoring. Since UNCD diamond has not been previously used in piezoresistive applications, temperature-denpendent piezoresistive coefficients and gage factors are determined first. The doped UNCD exhibits a significant piezoresistive effect with gauge factor of 7.53±0.32 and a piezoresistive coefficient of 8.12×10^−12 Pa^−1 at room temperature. The piezoresistive properties of UNCD are constant over the temperature range of 25−200C. 300 μm long cantilevers have the highest sensitivity of 0.186 m-Ohm/Ohm per μm of cantilever end deflection, which is approximately half that of similarly sized silicon cantilevers. UNCD cantilever arrays were fabricated consisting of four sixteen-cantilever arrays of length 20–90 μm in addition to an eight-cantilever array of length 120 μm. Laser doppler vibrometry (LDV) measured the cantilever resonant frequency, which ranged as 218 kHz−5.14 MHz in air and 73 kHz−3.68 MHz in water. The quality factor of the cantilever was 47−151 in air and 18−45 in water. The ability to measure frequencies of the cantilever arrays opens the possibility for detection of individual bacteria by monitoring frequency shift after cell capture.
Resumo:
Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.