3 resultados para Process performance
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Efforts to push the performance of transistors for millimeter-wave and microwave applications have borne fruit through device size scaling and the use of novel material systems. III-V semiconductors and their alloys hold a distinct advantage over silicon because they have much higher electron mobility which is a prerequisite for high frequency operation. InGaAs/InP pseudomorphic heterojunction bipolar transistors (HBTs) have demonstrated fT of 765 GHz at room temperature and InP based high electron mobility transistors (HEMTs) have demonstrated fMax of 1.2 THz. The 6.1 A lattice family of InAs, GaSb, AlSb covers a wide variety of band gaps and is an attractive future material system for high speed device development. Extremely high electron mobilities ~ 30,000 cm^2 V^-1s^-1 have been achieved in modulation doped InAs-AlSb structures. The work described in this thesis involves material characterization and process development for HEMT fabrication on this material system.
Resumo:
This dissertation presents the design of three high-performance successive-approximation-register (SAR) analog-to-digital converters (ADCs) using distinct digital background calibration techniques under the framework of a generalized code-domain linear equalizer. These digital calibration techniques effectively and efficiently remove the static mismatch errors in the analog-to-digital (A/D) conversion. They enable aggressive scaling of the capacitive digital-to-analog converter (DAC), which also serves as sampling capacitor, to the kT/C limit. As a result, outstanding conversion linearity, high signal-to-noise ratio (SNR), high conversion speed, robustness, superb energy efficiency, and minimal chip-area are accomplished simultaneously. The first design is a 12-bit 22.5/45-MS/s SAR ADC in 0.13-μm CMOS process. It employs a perturbation-based calibration based on the superposition property of linear systems to digitally correct the capacitor mismatch error in the weighted DAC. With 3.0-mW power dissipation at a 1.2-V power supply and a 22.5-MS/s sample rate, it achieves a 71.1-dB signal-to-noise-plus-distortion ratio (SNDR), and a 94.6-dB spurious free dynamic range (SFDR). At Nyquist frequency, the conversion figure of merit (FoM) is 50.8 fJ/conversion step, the best FoM up to date (2010) for 12-bit ADCs. The SAR ADC core occupies 0.06 mm2, while the estimated area the calibration circuits is 0.03 mm2. The second proposed digital calibration technique is a bit-wise-correlation-based digital calibration. It utilizes the statistical independence of an injected pseudo-random signal and the input signal to correct the DAC mismatch in SAR ADCs. This idea is experimentally verified in a 12-bit 37-MS/s SAR ADC fabricated in 65-nm CMOS implemented by Pingli Huang. This prototype chip achieves a 70.23-dB peak SNDR and an 81.02-dB peak SFDR, while occupying 0.12-mm2 silicon area and dissipating 9.14 mW from a 1.2-V supply with the synthesized digital calibration circuits included. The third work is an 8-bit, 600-MS/s, 10-way time-interleaved SAR ADC array fabricated in 0.13-μm CMOS process. This work employs an adaptive digital equalization approach to calibrate both intra-channel nonlinearities and inter-channel mismatch errors. The prototype chip achieves 47.4-dB SNDR, 63.6-dB SFDR, less than 0.30-LSB differential nonlinearity (DNL), and less than 0.23-LSB integral nonlinearity (INL). The ADC array occupies an active area of 1.35 mm2 and dissipates 30.3 mW, including synthesized digital calibration circuits and an on-chip dual-loop delay-locked loop (DLL) for clock generation and synchronization.
Resumo:
Knowledge is one of the most important assets for surviving in the modern business environment. The effective management of that asset mandates continuous adaptation by organizations, and requires employees to strive to improve the company's work processes. Organizations attempt to coordinate their unique knowledge with traditional means as well as in new and distinct ways, and to transform them into innovative resources better than those of their competitors. As a result, how to manage the knowledge asset has become a critical issue for modern organizations, and knowledge management is considered the most feasible solution. Knowledge management is a multidimensional process that identifies, acquires, develops, distributes, utilizes, and stores knowledge. However, many related studies focus only on fragmented or limited knowledge-management perspectives. In order to make knowledge management more effective, it is important to identify the qualitative and quantitative issues that are the foundation of the challenge of effective knowledge management in organizations. The main purpose of this study was to integrate the fragmented knowledge management perspectives into the holistic framework, which includes knowledge infrastructure capability (technology, structure, and culture) and knowledge process capability (acquisition, conversion, application, and protection), based on Gold's (2001) study. Additionally, because the effect of incentives ̶̶ which is widely acknowledged as a prime motivator in facilitating the knowledge management process ̶̶ was missing in the original framework, this study included the importance of incentives in the knowledge management framework. This study also identified the relationship of organizational performance from the standpoint of the Balanced Scorecard, which includes the customer-related, internal business process, learning & growth, and perceptual financial aspects of organizational performance in the Korean business context. Moreover, this study identified the relationship with the objective financial performance by calculating the Tobin's q ratio. Lastly, this study compared the group differences between larger and smaller organizations, and manufacturing and nonmanufacturing firms in the study of knowledge management. Since this study was conducted in Korea, the original instrument was translated into Korean through the back translation technique. A confirmatory factor analysis (CFA) was used to examine the validity and reliability of the instrument. To identify the relationship between knowledge management capabilities and organizational performance, structural equation modeling (SEM) and multiple regression analysis were conducted. A Student's t test was conducted to examine the mean differences. The results of this study indicated that there is a positive relationship between effective knowledge management and organizational performance. However, no empirical evidence was found to suggest that knowledge management capabilities are linked to the objective financial performance, which remains a topic for future review. Additionally, findings showed that knowledge management is affected by organization's size, but not by type of organization. The results of this study are valuable in establishing a valid and reliable survey instrument, as well as in providing strong evidence that knowledge management capabilities are essential to improving organizational performance currently and making important recommendations for future research.