2 resultados para Power generation planning

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To meet electricity demand, electric utilities develop growth strategies for generation, transmission, and distributions systems. For a long time those strategies have been developed by applying least-cost methodology, in which the cheapest stand-alone resources are simply added, instead of analyzing complete portfolios. As a consequence, least-cost methodology is biased in favor of fossil fuel-based technologies, completely ignoring the benefits of adding non-fossil fuel technologies to generation portfolios, especially renewable energies. For this reason, this thesis introduces modern portfolio theory (MPT) to gain a more profound insight into a generation portfolio’s performance using generation cost and risk metrics. We discuss all necessary assumptions and modifications to this finance technique for its application within power systems planning, and we present a real case of analysis. Finally, the results of this thesis are summarized, pointing out the main benefits and the scope of this new tool in the context of electricity generation planning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the last decade, wind power generation has seen rapid development. According to the U.S. Department of Energy, achieving 20\% wind power penetration in the U.S. by 2030 will require: (i) enhancement of the transmission infrastructure, (ii) improvement of reliability and operability of wind systems and (iii) increased U.S. manufacturing capacity of wind generation equipment. This research will concentrate on improvement of reliability and operability of wind energy conversion systems (WECSs). The increased penetration of wind energy into the grid imposes new operating conditions on power systems. This change requires development of an adequate reliability framework. This thesis proposes a framework for assessing WECS reliability in the face of external disturbances, e.g., grid faults and internal component faults. The framework is illustrated using a detailed model of type C WECS - doubly fed induction generator with corresponding deterministic and random variables in a simplified grid model. Fault parameters and performance requirements essential to reliability measurements are included in the simulation. The proposed framework allows a quantitative analysis of WECS designs; analysis of WECS control schemes, e.g., fault ride-through mechanisms; discovery of key parameters that influence overall WECS reliability; and computation of WECS reliability with respect to different grid codes/performance requirements.