2 resultados para Polyacrylamide hydrogels

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of the thesis describes a new patterning technique--microfluidic contact printing--that combines several of the desirable aspects of microcontact printing and microfluidic patterning and addresses some of their important limitations through the integration of a track-etched polycarbonate (PCTE) membrane. Using this technique, biomolecules (e.g., peptides, polysaccharides, and proteins) were printed in high fidelity on a receptor modified polyacrylamide hydrogel substrate. The patterns obtained can be controlled through modifications of channel design and secondary programming via selective membrane wetting. The protocols support the printing of multiple reagents without registration steps and fast recycle times. The second part describes a non-enzymatic, isothermal method to discriminate single nucleotide polymorphisms (SNPs). SNP discrimination using alkaline dehybridization has long been neglected because the pH range in which thermodynamic discrimination can be done is quite narrow. We found, however, that SNPs can be discriminated by the kinetic differences exhibited in the dehybridization of PM and MM DNA duplexes in an alkaline solution using fluorescence microscopy. We combined this method with multifunctional encoded hydrogel particle array (fabricated by stop-flow lithography) to achieve fast kinetics and high versatility. This approach may serve as an effective alternative to temperature-based method for analyzing unamplified genomic DNA in point-of-care diagnostic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of my Ph. D. thesis is to generalize a method for targeted anti-cancer drug delivery. Hydrophilic polymer-drug conjugates involve complicated synthesis; drug-encapsulated polymeric nanoparticles limit the loading capability of payloads. This thesis introduces the concept of nanoconjugates to overcome difficulties in synthesis and formulation. Drugs with hydroxyl group are able to initiate polyester synthesis in a regio- and chemo- selective way, with the mediation of ligand-tunable Zinc catalyst. Herein, three anti-cancer drugs are presented to demonstrate the high efficiency and selectivity in the method (Chapter 2-4). The obtained particles are stable in salt solution, releasing drugs over weeks in controlled manner. With the conjugation of aptamer, particles are capable to target prostate cancer cells in vitro. These results open the gateway to evaluate the in vivo efficacy of nanoconjugates for target cancer therapy (Chapter 5). Mechanism study of the polymerization leads to the discovery of chemosite selective synthesis of prodrugs with acrylate functional groups. Functional copolymer-drug conjugates will expand the scope of nanoconjugates (Chapter 6). Liposome-aptamer targeting drug delivery vehicle is well studied to achieve reversible cell-specific delivery of non-hydoxyl drugs e.g. cisplatin (Chapter 7). New monomers and polymerization mechanisms are explored for polyester in order to synthesize nanoconjugates with variety on properties (Chapter 8). Initial efforts to apply this type of prodrugs will be focused on the preparation of hydrogels for stem cell research (Chapter 9).