2 resultados para Oxidative metabolism

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A critical step during Bacillus anthracis infection is the outgrowth of germinated spores into vegetative bacilli that proliferate and disseminate rapidly within the host. An important challenge exists for developing chemotherapeutic agents that act upon and kill B. anthracis immediately after germination initiation when antibiotic resistance is lost, but prior to the outgrowth into vegetative bacilli, which is accompanied by toxin production. Chemical agents must also function in a manner refractive to the development of antimicrobial resistance. In this thesis we have identified the lantibiotics as a class of chemotherapeutics that are predicted to satisfy these two criteria. The objective of this thesis was to evaluate the efficacy of nisin, a prototypical lantibiotic, in prevention of outgrowth of germinated B. anthracis spores. Like all lantibiotics, nisin is a ribosomally translated peptide that undergoes post-translational modification to form (methyl)lanthionine rings that are critical for antimicrobial activity. Our studies indicate that nisin rapidly inhibits the in vitro outgrowth of germinated B. anthracis Sterne 7702 spores. Although germination initiation was shown to be essential for nisin-dependent antimicrobial activity, nisin did not inhibit or promote germination initiation. Nisin irreversibly killed germinated spores by blocking the establishment of a membrane potential and oxidative metabolism, while not affecting the dissolution of the outer spore structures. The membrane permeability of the spore was increased by nisin, but germinated spores did not undergo full lysis. Nisin was demonstrated to localize to lipid II, which is the penultimate precursor for cell wall biogenesis. This localization suggests two possible independent mechanisms of action, membrane pore formation and inhibition of peptidoglycan synthesis. Structure-activity studies with a truncated form of nisin lacking the two C-terminal (methyl)lanthionine rings and with non-pore forming mutants indicated that membrane disruption is essential for nisin-dependent inhibition of spore outgrowth to prevent membrane potential establishment. Finally, utilizing an in vitro infection model, it was shown that nisin reduced the viability of B. anthracis spores within an infection resulting in increased survival of immune cells while reducing infection-mediated cytokine expression. Fluorescence microscopy indicated that nisin localizes with spores within phagosomes of peritioneal macrophages in germinating conditions. These data demonstrate the effectiveness of nisin, as a model lantibiotic, for preventing spore outgrowth. It is speculated that nisin targeting of lipid II, resulting in membrane perturbations, may be effective at inhibiting the outgrowth of spores prepared from bacteria across a number of species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolism in an environment containing of 21% oxygen has a high risk of oxidative damage due to the formation of reactive oxygen species. Therefore, plants have evolved an antioxidant system consisting of metabolites and enzymes that either directly scavenge ROS or recycle the antioxidant metabolites. Ozone is a temporally dynamic molecule that is both naturally occurring as well as an environmental pollutant that is predicted to increase in concentration in the future as anthropogenic precursor emissions rise. It has been hypothesized that any elevation in ozone concentration will cause increased oxidative stress in plants and therefore enhanced subsequent antioxidant metabolism, but evidence for this response is variable. Along with increasing atmospheric ozone concentrations, atmospheric carbon dioxide concentration is also rising and is predicted to continue rising in the future. The effect of elevated carbon dioxide concentrations on antioxidant metabolism varies among different studies in the literature. Therefore, the question of how antioxidant metabolism will be affected in the most realistic future atmosphere, with increased carbon dioxide concentration and increased ozone concentration, has yet to be answered, and is the subject of my thesis research. First, in order to capture as much of the variability in the antioxidant system as possible, I developed a suite of high-throughput quantitative assays for a variety of antioxidant metabolites and enzymes. I optimized these assays for Glycine max (soybean), one of the most important food crops in the world. These assays provide accurate, rapid and high-throughput measures of both the general and specific antioxidant action of plant tissue extracts. Second, I investigated how growth at either elevated carbon dioxide concentration or chronic elevated ozone concentration altered antioxidant metabolism, and the ability of soybean to respond to an acute oxidative stress in a controlled environment study. I found that growth at chronic elevated ozone concentration increased the antioxidant capacity of leaves, but was unchanged or only slightly increased following an acute oxidative stress, suggesting that growth at chronic elevated ozone concentration primed the antioxidant system. Growth at high carbon dioxide concentration decreased the antioxidant capacity of leaves, increased the response of the existing antioxidant enzymes to an acute oxidative stress, but dampened and delayed the transcriptional response, suggesting an entirely different regulation of the antioxidant system. Third, I tested the findings from the controlled environment study in a field setting by investigating the response of the soybean antioxidant system to growth at elevated carbon dioxide concentration, chronic elevated ozone concentration and the combination of elevated carbon dioxide concentration and elevated ozone concentration. In this study, I confirmed that growth at elevated carbon dioxide concentration decreased specific components of antioxidant metabolism in the field. I also verified that increasing ozone concentration is highly correlated with increases in the metabolic and genomic components of antioxidant metabolism, regardless of carbon dioxide concentration environment, but that the response to increasing ozone concentration was dampened at elevated carbon dioxide concentration. In addition, I found evidence suggesting an up regulation of respiratory metabolism at higher ozone concentration, which would supply energy and carbon for detoxification and repair of cellular damage. These results consistently support the conclusion that growth at elevated carbon dioxide concentration decreases antioxidant metabolism while growth at elevated ozone concentration increases antioxidant metabolism.