2 resultados para Origin and destination.
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
In this thesis I examine a variety of linguistic elements which involve ``alternative'' semantic values---a class arguably including focus, interrogatives, indefinites, and disjunctions---and the connections between these elements. This study focusses on the analysis of such elements in Sinhala, with comparison to Malayalam, Tlingit, and Japanese. The central part of the study concerns the proper syntactic and semantic analysis of Q[uestion]-particles (including Sinhala "da", Malayalam "-oo", Japanese "ka"), which, in many languages, appear not only in interrogatives, but also in the formation of indefinites, disjunctions, and relative clauses. This set of contexts is syntactically-heterogeneous, and so syntax does not offer an explanation for the appearance of Q-particles in this particular set of environments. I propose that these contexts can be united in terms of semantics, as all involving some element which denotes a set of ``alternatives''. Both wh-words and disjunctions can be analysed as creating Hamblin-type sets of ``alternatives''. Q-particles can be treated as uniformly denoting variables over choice functions which apply to the aforementioned Hamblin-type sets, thus ``restoring'' the derivation to normal Montagovian semantics. The treatment of Q-particles as uniformly denoting variables over choice functions provides an explanation for why these particles appear in just this set of contexts: they all include an element with Hamblin-type semantics. However, we also find variation in the use of Q-particles; including, in some languages, the appearance of multiple morphologically-distinct Q-particles in different syntactic contexts. Such variation can be handled largely by positing that Q-particles may vary in their formal syntactic feature specifications, determining which syntactic contexts they are licensed in. The unified analysis of Q-particles as denoting variables over choice functions also raises various questions about the proper analysis of interrogatives, indefinites, and disjunctions, including issues concerning the nature of the semantics of wh-words and the syntactic structure of disjunction. As well, I observe that indefinites involving Q-particles have a crosslinguistic tendency to be epistemic indefinites, i.e. indefinites which explicitly signal ignorance of details regarding who or what satisfies the existential claim. I provide an account of such indefinites which draws on the analysis of Q-particles as variables over choice functions. These pragmatic ``signals of ignorance'' (which I argue to be presuppositions) also have a further role to play in determining the distribution of Q-particles in disjunctions. The final section of this study investigates the historical development of focus constructions and Q-particles in Sinhala. This diachronic study allows us not only to observe the origin and development of such elements, but also serves to delimit the range of possible synchronic analyses, thus providing us with further insights into the formal syntactic and semantic properties of Q-particles. This study highlights both the importance of considering various components of the grammar (e.g. syntax, semantics, pragmatics, morphology) and the use of philology in developing plausible formal analyses of complex linguistic phenomena such as the crosslinguistic distribution of Q-particles.
Resumo:
Magnetic fields are ubiquitous in galaxy cluster atmospheres and have a variety of astrophysical and cosmological consequences. Magnetic fields can contribute to the pressure support of clusters, affect thermal conduction, and modify the evolution of bubbles driven by active galactic nuclei. However, we currently do not fully understand the origin and evolution of these fields throughout cosmic time. Furthermore, we do not have a general understanding of the relationship between magnetic field strength and topology and other cluster properties, such as mass and X-ray luminosity. We can now begin to answer some of these questions using large-scale cosmological magnetohydrodynamic (MHD) simulations of the formation of galaxy clusters including the seeding and growth of magnetic fields. Using large-scale cosmological simulations with the FLASH code combined with a simplified model of the acceleration of cosmic rays responsible for the generation of radio halos, we find that the galaxy cluster frequency distribution and expected number counts of radio halos from upcoming low-frequency sur- veys are strongly dependent on the strength of magnetic fields. Thus, a more complete understanding of the origin and evolution of magnetic fields is necessary to understand and constrain models of diffuse synchrotron emission from clusters. One favored model for generating magnetic fields is through the amplification of weak seed fields in active galactic nuclei (AGN) accretion disks and their subsequent injection into cluster atmospheres via AGN-driven jets and bubbles. However, current large-scale cosmological simulations cannot directly include the physical processes associated with the accretion and feedback processes of AGN or the seeding and merging of the associated SMBHs. Thus, we must include these effects as subgrid models. In order to carefully study the growth of magnetic fields in clusters via AGN-driven outflows, we present a systematic study of SMBH and AGN subgrid models. Using dark-matter only cosmological simulations, we find that many important quantities, such as the relationship between SMBH mass and galactic bulge velocity dispersion and the merger rate of black holes, are highly sensitive to the subgrid model assumptions of SMBHs. In addition, using MHD calculations of an isolated cluster, we find that magnetic field strengths, extent, topology, and relationship to other gas quantities such as temperature and density are also highly dependent on the chosen model of accretion and feedback. We use these systematic studies of SMBHs and AGN inform and constrain our choice of subgrid models, and we use those results to outline a fully cosmological MHD simulation to study the injection and growth of magnetic fields in clusters of galaxies. This simulation will be the first to study the birth and evolution of magnetic fields using a fully closed accretion-feedback cycle, with as few assumptions as possible and a clearer understanding of the effects of the various parameter choices.