2 resultados para Order driven market
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.
Resumo:
Sharpening is a powerful image transformation because sharp edges can bring out image details. Sharpness is achieved by increasing local contrast and reducing edge widths. We present a method that enhances sharpness of images and thereby their perceptual quality. Most existing enhancement techniques require user input to improve the perception of the scene in a manner most pleasing to the particular user. Our goal of image enhancement is to improve the perception of sharpness in digital images for human viewers. We consider two parameters in order to exaggerate the differences between local intensities. The two parameters exploit local contrast and widths of edges. We start from the assumption that color, texture, or objects of focus such as faces affect the human perception of photographs. When human raters are presented with a collection of images with different sharpness and asked to rank them according to perceived sharpness, the results have shown that there is a statistical consensus among the raters. We introduce a ramp enhancement technique by modifying the optimal overshoot in the ramp for different region contrasts as well as the new ramp width. Optimal parameter values are searched to be applied to regions under the criteria mentioned above. In this way, we aim to enhance digital images automatically to create pleasing image output for common users.