3 resultados para Optimizing time on-wing
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
A recent focus on contemporary evolution and the connections between communities has sought to more closely integrate the fields of ecology and evolutionary biology. Studies of coevolutionary dynamics, life history evolution, and rapid local adaptation demonstrate that ecological circumstances can dictate evolutionary trajectories. Thus, variation in species identity, trait distributions, and genetic composition may be maintained among ecologically divergent habitats. New theories and hypotheses (e.g., metacommunity theory and the Monopolization hypothesis) have been developed to understand better the processes occurring in spatially structured environments and how the movement of individuals among habitats contributes to ecology and evolution at broader scales. As few empirical studies of these theories exist, this work seeks to further test these concepts. Spatial and temporal dispersal are the mechanisms that connect habitats to one another. Both processes allow organisms to leave conditions that are suboptimal or unfavorable, and enable colonization and invasion, species range expansion, and gene flow among populations. Freshwater zooplankton are aquatic crustaceans that typically develop resting stages as part of their life cycle. Their dormant propagules allow organisms to disperse both temporally and among habitats. Additionally, because a number of species are cyclically parthenogenetic, they make excellent model organisms for studying evolutionary questions in a controlled environment. Here, I use freshwater zooplankton communities as model systems to explore the mechanisms and consequences of dispersal and to test these nascent theories on the influence of spatial structure in natural systems. In Chapter one, I use field experiments and mathematical models to determine the range of adult zooplankton dispersal over land and what vectors are moving zooplankton. Chapter two focuses on prolonged dormancy of one aquatic zooplankter, Daphnia pulex. Using statistical models with field and mesocosm experiments, I show that variation in Daphnia dormant egg hatching is substantial among populations in nature, and some of that variation can be attributed to genetic differences among the populations. Chapters three and four explore the consequences of dispersal at multiple levels of biological organization. Chapter three seeks to understand the population level consequences of dispersal over evolutionary time on current patterns of population genetic differentiation. Nearby populations of D. pulex often exhibit high population genetic differentiation characteristic of very low dispersal. I explore two alternative hypotheses that seek to explain this pattern. Finally, chapter four is a case study of how dispersal has influenced patterns of variation at the community, trait and genetic levels of biodiversity in a lake metacommunity.
Resumo:
This dissertation investigates the acquisition of oblique relative clauses in L2 Spanish by English and Moroccan Arabic speakers in order to understand the role of previous linguistic knowledge and its interaction with Universal Grammar on the one hand, and the relationship between grammatical knowledge and its use in real-time, on the other hand. Three types of tasks were employed: an oral production task, an on-line self-paced grammaticality judgment task, and an on-line self-paced reading comprehension task. Results indicated that the acquisition of oblique relative clauses in Spanish is a problematic area for second language learners of intermediate proficiency in the language, regardless of their native language. In particular, this study has showed that, even when the learners’ native language shares the main properties of the L2, i.e., fronting of the obligatory preposition (Pied-Piping), there is still room for divergence, especially in production and timed grammatical intuitions. On the other hand, reaction time data have shown that L2 learners can and do converge at the level of sentence processing, showing exactly the same real-time effects for oblique relative clauses that native speakers had. Processing results demonstrated that native and non-native speakers alike are able to apply universal processing principles such as the Minimal Chain Principle (De Vincenzi, 1991) even when the L2 learners still have incomplete grammatical representations, a result that contradicts some of the predictions of the Shallow Structure Hypothesis (Clahsen & Felser, 2006). Results further suggest that the L2 processing and comprehension domains may be able to access some type of information that it is not yet available to other grammatical modules, probably because transfer of certain L1 properties occurs asymmetrically across linguistic domains. In addition, this study also explored the Null-Prep phenomenon in L2 Spanish, and proposed that Null-Prep is an interlanguage stage, fully available and accounted within UG, which intermediate L2 as well as first language learners go through in the development of pied-piping oblique relative clauses. It is hypothesized that this intermediate stage is the result of optionality of the obligatory preposition in the derivation, when it is not crucial for the meaning of the sentence, and when the DP is going to be in an A-bar position, so it can get default case. This optionality can be predicted by the Bottleneck Hypothesis (Slabakova, 2009c) if we consider that these prepositions are some sort of functional morphology. This study contributes to the field of SLA and L2 processing in various ways. First, it demonstrates that the grammatical representations may be dissociated from grammatical processing in the sense that L2 learners, unlike native speakers, can present unexpected asymmetries such as a convergent processing but divergent grammatical intuitions or production. This conclusion is only possible under the assumption of a modular language system. Finally, it contributes to the general debate of generative SLA since in argues for a fully UG-constrained interlanguage grammar.
Resumo:
The current study investigated the cognitive workload of sentence and clause wrap-up in younger and older readers. A large number of studies have demonstrated the presence of wrap-up effects, peaks in processing time at clause and sentence boundaries that some argue reflect attention to organizational and integrative semantic processes. However, the exact nature of these wrap-up effects is still not entirely clear, with some arguing that wrap-up is not related to processing difficulty, but rather is triggered by a low-level oculomotor response or the implicit monitoring of intonational contour. The notion that wrap-up effects are resource-demanding was directly tested by examining the degree to which sentence and clause wrap-up affects the parafoveal preview benefit. Older and younger adults read passages in which a target word N occurred in a sentence-internal, clause-final, or sentence-final position. A gaze-contingent boundary change paradigm was used in which, on some trials, a non-word preview of word N+1 was replaced by a target word once the eyes crossed an invisible boundary located between words N and N+1. All measures of reading time on word N were longer at clause and sentence boundaries than in the sentence-internal position. In the earliest measures of reading time, sentence and clause wrap-up showed evidence of reducing the magnitude of the preview benefit similarly for younger and older adults. However, this effect was moderated by age in gaze duration, such that older adults showed a complete reduction in the preview benefit in the sentence-final condition. Additionally, sentence and clause wrap-up were negatively associated with the preview benefit. Collectively, the findings from the current study suggest that wrap-up is cognitively demanding and may be less efficient with age, thus, resulting in a reduction of the parafoveal preview during normal reading.