2 resultados para Open source information retrieval
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
As an emerging innovation paradigm gaining momentum in recent years, the open innovation paradigm is calling for greater theoretical depth and more empirical research. This dissertation proposes that open innovation in the context of open source software sponsorship may be viewed as knowledge strategies of the firm. Hence, this dissertation examines the performance determinants of open innovation through the lens of knowledge-based perspectives. Using event study and regression methodologies, this dissertation found that these open source software sponsorship events can indeed boost the stock market performance of US public firms. In addition, both the knowledge capabilities of the firms and the knowledge profiles of the open source projects they sponsor matter for performance. In terms of firm knowledge capabilities, internet service firms perform better than other firms owing to their advantageous complementary capabilities. Also, strong knowledge exploitation capabilities of the firm are positively associated with performance. In terms of the knowledge profile of sponsored projects, platform projects perform better than component projects. Also, community-originated projects outperform firm-originated projects. Finally, based on these findings, this dissertation discussed the important theoretical implications for the strategic tradeoff between knowledge protection and sharing.
Resumo:
We build a system to support search and visualization on heterogeneous information networks. We first build our system on a specialized heterogeneous information network: DBLP. The system aims to facilitate people, especially computer science researchers, toward a better understanding and user experience about academic information networks. Then we extend our system to the Web. Our results are much more intuitive and knowledgeable than the simple top-k blue links from traditional search engines, and bring more meaningful structural results with correlated entities. We also investigate the ranking algorithm, and we show that the personalized PageRank and proposed Hetero-personalized PageRank outperform the TF-IDF ranking or mixture of TF-IDF and authority ranking. Our work opens several directions for future research.