1 resultado para Neuroimaging genetics
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Because children are becoming increasingly overweight, unhealthy and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels in older adults are associated with increased hippocampal volume and superior memory performance. The present study aimed to further extend the link between fitness, hippocampal volume, and memory to a sample of preadolescent children. To this end, magnetic resonance imaging was employed to investigate whether high- and low-fit 9- and 10-year-old children showed differences in hippocampal volume and if the differences were related to performance on an item and relational memory task. Relational but not item memory is primarily supported by the hippocampus. Consistent with predictions, high-fit children showed greater bilateral hippocampal volumes. Furthermore, hippocampal volume was positively associated with performance on the relational but not the item memory task. The findings are the first to suggest that aerobic fitness can impact the structure and function of the developing human brain.