2 resultados para Motion-based input

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing availability and popularity of opinion rich resources on the online web resources, such as review sites and personal blogs, has made it convenient to find out about the opinions and experiences of layman people. But, simultaneously, this huge eruption of data has made it difficult to reach to a conclusion. In this thesis, I develop a novel recommendation system, Recomendr that can help users digest all the reviews about an entity and compare candidate entities based on ad-hoc dimensions specified by keywords. It expects keyword specified ad-hoc dimensions/features as input from the user and based on those features; it compares the selected range of entities using reviews provided on the related User Generated Contents (UGC) e.g. online reviews. It then rates the textual stream of data using a scoring function and returns the decision based on an aggregate opinion to the user. Evaluation of Recomendr using a data set in the laptop domain shows that it can effectively recommend the best laptop as per user-specified dimensions such as price. Recomendr is a general system that can potentially work for any entities on which online reviews or opinionated text is available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have reconstituted a simple in vitro system using only mammalian dynein and mammalian kinesin attached to a single cargo. These cargoes undergo saltatory motion typically seen in vivo, indicating that the motors engage in a tug-of-war. When the complex hits a barrier, the cargo often reverses direction. In some cases, it tries several up-and-back motions, during which time the dynein likely pulls the cargo onto a different protofilament, and is sometimes able to bypass the blockage. This explains why eliminating kinesin or dynein stops motion in both directions in vivo. We also find that mammalian dynein, but not kinesin, often takes backwards steps when under backward force. However, yeast dynein coupled with mammalian kinesin does not display these attributes, as expected.