2 resultados para Model systems

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent focus on contemporary evolution and the connections between communities has sought to more closely integrate the fields of ecology and evolutionary biology. Studies of coevolutionary dynamics, life history evolution, and rapid local adaptation demonstrate that ecological circumstances can dictate evolutionary trajectories. Thus, variation in species identity, trait distributions, and genetic composition may be maintained among ecologically divergent habitats. New theories and hypotheses (e.g., metacommunity theory and the Monopolization hypothesis) have been developed to understand better the processes occurring in spatially structured environments and how the movement of individuals among habitats contributes to ecology and evolution at broader scales. As few empirical studies of these theories exist, this work seeks to further test these concepts. Spatial and temporal dispersal are the mechanisms that connect habitats to one another. Both processes allow organisms to leave conditions that are suboptimal or unfavorable, and enable colonization and invasion, species range expansion, and gene flow among populations. Freshwater zooplankton are aquatic crustaceans that typically develop resting stages as part of their life cycle. Their dormant propagules allow organisms to disperse both temporally and among habitats. Additionally, because a number of species are cyclically parthenogenetic, they make excellent model organisms for studying evolutionary questions in a controlled environment. Here, I use freshwater zooplankton communities as model systems to explore the mechanisms and consequences of dispersal and to test these nascent theories on the influence of spatial structure in natural systems. In Chapter one, I use field experiments and mathematical models to determine the range of adult zooplankton dispersal over land and what vectors are moving zooplankton. Chapter two focuses on prolonged dormancy of one aquatic zooplankter, Daphnia pulex. Using statistical models with field and mesocosm experiments, I show that variation in Daphnia dormant egg hatching is substantial among populations in nature, and some of that variation can be attributed to genetic differences among the populations. Chapters three and four explore the consequences of dispersal at multiple levels of biological organization. Chapter three seeks to understand the population level consequences of dispersal over evolutionary time on current patterns of population genetic differentiation. Nearby populations of D. pulex often exhibit high population genetic differentiation characteristic of very low dispersal. I explore two alternative hypotheses that seek to explain this pattern. Finally, chapter four is a case study of how dispersal has influenced patterns of variation at the community, trait and genetic levels of biodiversity in a lake metacommunity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of RNA as a mediator of genetic information is widely appreciated. RNA molecules also participate in the regulation of various post-transcriptional activities, such as mRNA splicing, editing, RNA stability and transport. Their regulatory roles for these activities are highly dependent on finely tuned associations with cognate proteins. The RNA recognition motif (RRM) is an ancient RNA binding module that participates in hundreds of essential activities where specific RNA recognition is required. We have applied phage display and site-directed mutagenesis to dissect principles of RRM-controlled RNA recognition. The model systems we are investigating are U1A and CUG-BP1. In this dissertation, the molecular basis of the binding affinity of U1A-RNA beyond individual contacts was investigated. We have identified and evaluated the contributions of the local cooperativity formed by three neighboring residues (Asn15, Asn16 and Glu19) to the stability of the U1A-RNA complex. The localized cooperative network was mapped by double-mutant cycles and explored using phage display. We also showed that a cluster of these residues forms a “hot spot” on the surface of U1A; a single substitution at position 19 with Gln or His can alter the binding properties of U1A to recognize a non-cognate G4U RNA. Finally, we applied a deletion analysis of CUG-BP1 to define the contributions of individual RRMs and RRM combinations to the stability of the complex formed between CUG-BP1 and the GRE sequence. The preliminary results showed RRM3 of CUG-BP1 is a key domain for RNA binding. It possibly binds to the GRE sequence cooperatively with RRM2 of CUG-BP1. RRM1 of CUG-BP1 is not required for GRE recognition, but may be important for maintaining the stability of the full-length CUG-BP1.