2 resultados para Minnesota Mining and Manufacturing Company

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge is one of the most important assets for surviving in the modern business environment. The effective management of that asset mandates continuous adaptation by organizations, and requires employees to strive to improve the company's work processes. Organizations attempt to coordinate their unique knowledge with traditional means as well as in new and distinct ways, and to transform them into innovative resources better than those of their competitors. As a result, how to manage the knowledge asset has become a critical issue for modern organizations, and knowledge management is considered the most feasible solution. Knowledge management is a multidimensional process that identifies, acquires, develops, distributes, utilizes, and stores knowledge. However, many related studies focus only on fragmented or limited knowledge-management perspectives. In order to make knowledge management more effective, it is important to identify the qualitative and quantitative issues that are the foundation of the challenge of effective knowledge management in organizations. The main purpose of this study was to integrate the fragmented knowledge management perspectives into the holistic framework, which includes knowledge infrastructure capability (technology, structure, and culture) and knowledge process capability (acquisition, conversion, application, and protection), based on Gold's (2001) study. Additionally, because the effect of incentives ̶̶ which is widely acknowledged as a prime motivator in facilitating the knowledge management process ̶̶ was missing in the original framework, this study included the importance of incentives in the knowledge management framework. This study also identified the relationship of organizational performance from the standpoint of the Balanced Scorecard, which includes the customer-related, internal business process, learning & growth, and perceptual financial aspects of organizational performance in the Korean business context. Moreover, this study identified the relationship with the objective financial performance by calculating the Tobin's q ratio. Lastly, this study compared the group differences between larger and smaller organizations, and manufacturing and nonmanufacturing firms in the study of knowledge management. Since this study was conducted in Korea, the original instrument was translated into Korean through the back translation technique. A confirmatory factor analysis (CFA) was used to examine the validity and reliability of the instrument. To identify the relationship between knowledge management capabilities and organizational performance, structural equation modeling (SEM) and multiple regression analysis were conducted. A Student's t test was conducted to examine the mean differences. The results of this study indicated that there is a positive relationship between effective knowledge management and organizational performance. However, no empirical evidence was found to suggest that knowledge management capabilities are linked to the objective financial performance, which remains a topic for future review. Additionally, findings showed that knowledge management is affected by organization's size, but not by type of organization. The results of this study are valuable in establishing a valid and reliable survey instrument, as well as in providing strong evidence that knowledge management capabilities are essential to improving organizational performance currently and making important recommendations for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the dramatic growth of text information, there is an increasing need for powerful text mining systems that can automatically discover useful knowledge from text. Text is generally associated with all kinds of contextual information. Those contexts can be explicit, such as the time and the location where a blog article is written, and the author(s) of a biomedical publication, or implicit, such as the positive or negative sentiment that an author had when she wrote a product review; there may also be complex context such as the social network of the authors. Many applications require analysis of topic patterns over different contexts. For instance, analysis of search logs in the context of the user can reveal how we can improve the quality of a search engine by optimizing the search results according to particular users; analysis of customer reviews in the context of positive and negative sentiments can help the user summarize public opinions about a product; analysis of blogs or scientific publications in the context of a social network can facilitate discovery of more meaningful topical communities. Since context information significantly affects the choices of topics and language made by authors, in general, it is very important to incorporate it into analyzing and mining text data. In general, modeling the context in text, discovering contextual patterns of language units and topics from text, a general task which we refer to as Contextual Text Mining, has widespread applications in text mining. In this thesis, we provide a novel and systematic study of contextual text mining, which is a new paradigm of text mining treating context information as the ``first-class citizen.'' We formally define the problem of contextual text mining and its basic tasks, and propose a general framework for contextual text mining based on generative modeling of text. This conceptual framework provides general guidance on text mining problems with context information and can be instantiated into many real tasks, including the general problem of contextual topic analysis. We formally present a functional framework for contextual topic analysis, with a general contextual topic model and its various versions, which can effectively solve the text mining problems in a lot of real world applications. We further introduce general components of contextual topic analysis, by adding priors to contextual topic models to incorporate prior knowledge, regularizing contextual topic models with dependency structure of context, and postprocessing contextual patterns to extract refined patterns. The refinements on the general contextual topic model naturally lead to a variety of probabilistic models which incorporate different types of context and various assumptions and constraints. These special versions of the contextual topic model are proved effective in a variety of real applications involving topics and explicit contexts, implicit contexts, and complex contexts. We then introduce a postprocessing procedure for contextual patterns, by generating meaningful labels for multinomial context models. This method provides a general way to interpret text mining results for real users. By applying contextual text mining in the ``context'' of other text information management tasks, including ad hoc text retrieval and web search, we further prove the effectiveness of contextual text mining techniques in a quantitative way with large scale datasets. The framework of contextual text mining not only unifies many explorations of text analysis with context information, but also opens up many new possibilities for future research directions in text mining.