3 resultados para Metropolis-coupled Markov Chain Monte Carlo
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
The recent advent of new technologies has led to huge amounts of genomic data. With these data come new opportunities to understand biological cellular processes underlying hidden regulation mechanisms and to identify disease related biomarkers for informative diagnostics. However, extracting biological insights from the immense amounts of genomic data is a challenging task. Therefore, effective and efficient computational techniques are needed to analyze and interpret genomic data. In this thesis, novel computational methods are proposed to address such challenges: a Bayesian mixture model, an extended Bayesian mixture model, and an Eigen-brain approach. The Bayesian mixture framework involves integration of the Bayesian network and the Gaussian mixture model. Based on the proposed framework and its conjunction with K-means clustering and principal component analysis (PCA), biological insights are derived such as context specific/dependent relationships and nested structures within microarray where biological replicates are encapsulated. The Bayesian mixture framework is then extended to explore posterior distributions of network space by incorporating a Markov chain Monte Carlo (MCMC) model. The extended Bayesian mixture model summarizes the sampled network structures by extracting biologically meaningful features. Finally, an Eigen-brain approach is proposed to analyze in situ hybridization data for the identification of the cell-type specific genes, which can be useful for informative blood diagnostics. Computational results with region-based clustering reveals the critical evidence for the consistency with brain anatomical structure.
Resumo:
The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.
A new age of fuel performance code criteria studied through advanced atomistic simulation techniques
Resumo:
A fundamental step in understanding the effects of irradiation on metallic uranium and uranium dioxide ceramic fuels, or any material, must start with the nature of radiation damage on the atomic level. The atomic damage displacement results in a multitude of defects that influence the fuel performance. Nuclear reactions are coupled, in that changing one variable will alter others through feedback. In the field of fuel performance modeling, these difficulties are addressed through the use of empirical models rather than models based on first principles. Empirical models can be used as a predictive code through the careful manipulation of input variables for the limited circumstances that are closely tied to the data used to create the model. While empirical models are efficient and give acceptable results, these results are only applicable within the range of the existing data. This narrow window prevents modeling changes in operating conditions that would invalidate the model as the new operating conditions would not be within the calibration data set. This work is part of a larger effort to correct for this modeling deficiency. Uranium dioxide and metallic uranium fuels are analyzed through a kinetic Monte Carlo code (kMC) as part of an overall effort to generate a stochastic and predictive fuel code. The kMC investigations include sensitivity analysis of point defect concentrations, thermal gradients implemented through a temperature variation mesh-grid, and migration energy values. In this work, fission damage is primarily represented through defects on the oxygen anion sublattice. Results were also compared between the various models. Past studies of kMC point defect migration have not adequately addressed non-standard migration events such as clustering and dissociation of vacancies. As such, the General Utility Lattice Program (GULP) code was utilized to generate new migration energies so that additional non-migration events could be included into kMC code in the future for more comprehensive studies. Defect energies were calculated to generate barrier heights for single vacancy migration, clustering and dissociation of two vacancies, and vacancy migration while under the influence of both an additional oxygen and uranium vacancy.