1 resultado para MOTH
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Among insects, which are the most diverse eukaryotic group on earth, Lepidoptera is one of four enormously diverse orders, with approximately 10,000 described species in North America. Within the order, Nearctic “microlepidoptera,” which represent an overwhelmingly large percentage of diversity within the order, remain poorly known despite their ecological importance in many plant communities. In this thesis, I undertook several studies of microlepidoptera diversity in a natural community type (hill prairie) and a managed community type (biofuel feedstock). In two Illinois hill prairies differing in size, latitude, and plant composition, alpha diversity of Pyraloidea and Tortricidae was similar, but the prairies were found to support different sets of species of these moth groups. It is concluded that the similarity in alpha diversity occurs because the larger prairie supports primarily a complement of moth species that feed as larvae on prairie plants (especially species of Asteraceae and Fabaceae), whereas the moths collected in the small prairie represent relatively few prairie-associated species, plus a large component of species that feed as larvae on deciduous trees that surround the prairie. This agrees with the finding of high beta diversity of moths between the sites, which reflects a high level of larval hostplant specificity in most species of Pyraloidea and Tortricidae. Based on published information plus observations made on microlepidoptera collected during the course of this study, 31 families of basal microlepidoptera were reviewed with an aim toward evaluating the likelihood of their including species that are dependent on tallgrass prairie. Of these families, 12 were evaluated as possible, and two as likely or certain, to include prairie-dependent species. In a comparison of moth diversity in light-trap samples from corn, miscanthus, switchgrass, and native prairie, alpha diversity was highest in prairie and was higher in switchgrass than in the other two biofuel crops. Moth species complements generally were similar among the biofuel crops, and prairie shared higher species complementarity with switchgrass than with corn or miscanthus. These findings suggest that large-scale conversion of land to biofuel crops may, to a substantial degree, detrimentally affect arthropod biodiversity, with a resulting loss of valuable arthropod-derived ecosystem services both within the cropping systems and in the surrounding landscape. During the course of this study, rearing efforts yielded two species of moths of the family Gelechiidae, both of which are monophagous leaf feeders on leadplant, Amorpha canescens (Fabaceae). Because these moths are restricted to tallgrass prairie, they are likely to be of interest to conservation biologists. In the interest of naming the moths to facilitate communication regarding them, and to augment our taxonomic knowledge of their respective genera, the moths are described, and diagnoses are provided to differentiate them from similar, related species.