2 resultados para Luminescence in crystals,
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Luminescent excitation spectra were measured for the F and M centers in KCl; in particular, for the F band, M band, and the M2 transition. In all 3 cases, the spectra were nearly double-Gaussian in shape, and the efficiency for luminescence was nearly independent of the wavelength of the exciting light. A comparison of the absorption spectrum with the excitation spectrum of the F-band region of crystals with M centers present and oriented provided further evidence for the existence of the M2 transition of van Doorn and Haven and of Okamoto, and against the energy transfer theory of Lambe and Compton. The efficiency for luminescence of the M center upon M-band excitation was equal to the efficiency for F centers in pulse-annealed crystals of low F-center concentrations. The ratio of the efficiencies of the Ml to M2 transitions was 1.2 ± .25. The oscillator strengths of 3 of the M-center transitions in KCl relative to the oscillator strength for the F center were found to be in better agreement with the results reported by Okamoto, than with the results reported by Delbecq. The polarization of luminescence of M centers in KCl was measured at right angles to the exciting light, and was found to agree with the predictions of the van Doorn-Haven model of the M center. In NaF crystals having no absorption bands to the red side of the M band, the absorption and excitation spectra of the M band were accurately double-Gaussian over a wide range of wavelengths; the efficiency of luminescence of the M center was independent of the wavelength of the exciting light in that range; and the polarization of luminescence upon M-band excitation agreed well with the calculations based on the van DoornHaven model of the M center, In crystals in which the F band was bleached sufficiently to make it smaller in absorption height than the M band, several new color centers appeared on the red side of the M band, in contrast to the results reported by Blum; in these crystals, the polarization of luminescence of the M center upon M-band excitation disagreed strongly with theory, even though the absorptions for the new color centers were small compared to the M-band absorption.
Resumo:
In-situ observations on the size and shape of particles in arctic cirrus are less common than those in mid-latitude and tropical cirrus with considerable uncertainty about the contributions of small ice crystals (maximum dimension D<50 µm) to the mass and radiative properties that impact radiative forcing. In situ measurements of small ice crystals in arctic cirrus were made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 during transits of the National Research Council of Canada Convair-580 between Fairbanks and Barrow, Alaska and during Mixed Phase Arctic Cloud Experiment (MPACE) in October 2004 with the University of North Dakota (UND) Citation over Barrow, Alaska. Concentrations of small ice crystals with D < 50 μm from a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Forward Scattering Spectrometer Probe (FSSP), and a two-dimensional stereo probe (2DS) were compared as functions of the concentrations of crystals with D > 100 μm measured by a Cloud Imaging Probe (CIP) and two-dimensional stereo probe (2DS) in order to assess whether the shattering of large ice crystals on protruding components of different probes artificially amplified measurements of small ice crystal concentrations. The dependence of the probe comparison on other variables as CIP N>100 (number concentrations greater than diameter D>100 μm),temperature, relative humidity respect to ice (RHice), dominant habit from the Cloud Particle Imager (CPI), aircraft roll, pitch, true air speed and angle of attack was examined to understand potential causes of discrepancies between probe concentrations. Data collected by these probes were also compared against the data collected by a CAS, CDP and CIP during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) and by a CAS and 2DS during the Tropical Composition, Cloud and Climate Coupling (TC4) missions. During ISDAC, the CAS and FSSP both overestimated measurements of small ice crystals compared to both the CDP and 2DS by 1-2 orders of magnitude. Further, the amount of overestimation increased with the concentrations from the CIP2 (N>100 > 0.1 L-1). There was an unexplained discrepancy in concentrations of small crystals between the CDP and 2DS during ISDAC. In addition, there was a strong dependence on RHice of the average ratios of the N3-50, CAS/N3-50,CDP, N3-50, FSSP096/N3-50,CDP, N3-50, CAS/N3-50,FSSP096, N10-50, CDP/N3-50,2DS, N10-50, FSSP096/N10-50,2DS. Continued studies are needed to understand the discrepancy of these probes.