1 resultado para Learning Bayesian Networks
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (23)
- Applied Math and Science Education Repository - Washington - USA (4)
- Archive of European Integration (2)
- Aston University Research Archive (110)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (115)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (33)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (23)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (11)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (15)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (6)
- Ecology and Society (1)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (15)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (15)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (13)
- Open Access Repository of Association for Learning Technology (ALT) (3)
- Open University Netherlands (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- RDBU - Repositório Digital da Biblioteca da Unisinos (4)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (33)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (2)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (58)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (57)
- Université de Montréal (2)
- Université de Montréal, Canada (15)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (128)
- University of Southampton, United Kingdom (1)
- University of Washington (10)
- WestminsterResearch - UK (2)
Resumo:
As a way to gain greater insights into the operation of online communities, this dissertation applies automated text mining techniques to text-based communication to identify, describe and evaluate underlying social networks among online community members. The main thrust of the study is to automate the discovery of social ties that form between community members, using only the digital footprints left behind in their online forum postings. Currently, one of the most common but time consuming methods for discovering social ties between people is to ask questions about their perceived social ties. However, such a survey is difficult to collect due to the high investment in time associated with data collection and the sensitive nature of the types of questions that may be asked. To overcome these limitations, the dissertation presents a new, content-based method for automated discovery of social networks from threaded discussions, referred to as ‘name network’. As a case study, the proposed automated method is evaluated in the context of online learning communities. The results suggest that the proposed ‘name network’ method for collecting social network data is a viable alternative to costly and time-consuming collection of users’ data using surveys. The study also demonstrates how social networks produced by the ‘name network’ method can be used to study online classes and to look for evidence of collaborative learning in online learning communities. For example, educators can use name networks as a real time diagnostic tool to identify students who might need additional help or students who may provide such help to others. Future research will evaluate the usefulness of the ‘name network’ method in other types of online communities.