2 resultados para Knowledge discovery in databases
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
The purpose of this study was to identify the structural pathways of personal cognition and social context as they influence knowledge sharing behaviors in communities of practice. Based on the existing literature, ten hypotheses and a conceptual model built on the basis of the social cognitive theory were developed regarding the interrelationships of the five constructs: self-efficacy for knowledge sharing, outcome expectations, sense of community, leadership of a community, and knowledge sharing. The data were collected through an online questionnaire from the employees who have participated in communities of practice in a Fortune 100 corporation. A total of 438 usable questionnaires were collected. Overall, three analyses were conducted in order to prove the given hypotheses: (a) hypothesized measurement model fit, (b) relational and influential associations among the constructs, and (c) structural equation model analysis (SEM). In addition, open-ended responses were analyzed. The results presented that (a) hypothesized measurement models were valid and reliable, (b) personal cognitive factors, self-efficacy and outcome expectations for knowledge sharing, were found to be significant predictors of community members’ sense of community and knowledge sharing behaviors, (c) sense of community had the most significant impact on the knowledge sharing, (d) as the perceived social context, sense of community mediated the effects of personal cognition on knowledge sharing behaviors, and (e) personal cognition and social context jointly contributed to knowledge sharing. In brief, all of the hypotheses were positively supported. A conclusive summary is provided along with contributive discussion. Implications and contributions to HRD researchers and practitioners are discussed, and recommendations are provided.
Resumo:
Discovery Driven Analysis (DDA) is a common feature of OLAP technology to analyze structured data. In essence, DDA helps analysts to discover anomalous data by highlighting 'unexpected' values in the OLAP cube. By giving indications to the analyst on what dimensions to explore, DDA speeds up the process of discovering anomalies and their causes. However, Discovery Driven Analysis (and OLAP in general) is only applicable on structured data, such as records in databases. We propose a system to extend DDA technology to semi-structured text documents, that is, text documents with a few structured data. Our system pipeline consists of two stages: first, the text part of each document is structured around user specified dimensions, using semi-PLSA algorithm; then, we adapt DDA to these fully structured documents, thus enabling DDA on text documents. We present some applications of this system in OLAP analysis and show how scalability issues are solved. Results show that our system can handle reasonable datasets of documents, in real time, without any need for pre-computation.