2 resultados para Knowledge Technologies and Applications

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge is one of the most important assets for surviving in the modern business environment. The effective management of that asset mandates continuous adaptation by organizations, and requires employees to strive to improve the company's work processes. Organizations attempt to coordinate their unique knowledge with traditional means as well as in new and distinct ways, and to transform them into innovative resources better than those of their competitors. As a result, how to manage the knowledge asset has become a critical issue for modern organizations, and knowledge management is considered the most feasible solution. Knowledge management is a multidimensional process that identifies, acquires, develops, distributes, utilizes, and stores knowledge. However, many related studies focus only on fragmented or limited knowledge-management perspectives. In order to make knowledge management more effective, it is important to identify the qualitative and quantitative issues that are the foundation of the challenge of effective knowledge management in organizations. The main purpose of this study was to integrate the fragmented knowledge management perspectives into the holistic framework, which includes knowledge infrastructure capability (technology, structure, and culture) and knowledge process capability (acquisition, conversion, application, and protection), based on Gold's (2001) study. Additionally, because the effect of incentives ̶̶ which is widely acknowledged as a prime motivator in facilitating the knowledge management process ̶̶ was missing in the original framework, this study included the importance of incentives in the knowledge management framework. This study also identified the relationship of organizational performance from the standpoint of the Balanced Scorecard, which includes the customer-related, internal business process, learning & growth, and perceptual financial aspects of organizational performance in the Korean business context. Moreover, this study identified the relationship with the objective financial performance by calculating the Tobin's q ratio. Lastly, this study compared the group differences between larger and smaller organizations, and manufacturing and nonmanufacturing firms in the study of knowledge management. Since this study was conducted in Korea, the original instrument was translated into Korean through the back translation technique. A confirmatory factor analysis (CFA) was used to examine the validity and reliability of the instrument. To identify the relationship between knowledge management capabilities and organizational performance, structural equation modeling (SEM) and multiple regression analysis were conducted. A Student's t test was conducted to examine the mean differences. The results of this study indicated that there is a positive relationship between effective knowledge management and organizational performance. However, no empirical evidence was found to suggest that knowledge management capabilities are linked to the objective financial performance, which remains a topic for future review. Additionally, findings showed that knowledge management is affected by organization's size, but not by type of organization. The results of this study are valuable in establishing a valid and reliable survey instrument, as well as in providing strong evidence that knowledge management capabilities are essential to improving organizational performance currently and making important recommendations for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is devoted to the development, synthesis, properties, and applications of nano materials for critical technologies, including three areas: (1) Microbial contamination of drinking water is a serious problem of global significance. About 51% of the waterborne disease outbreaks in the United States can be attributed to contaminated ground water. Development of metal oxide nanoparticles, as viricidal materials is of technological and fundamental scientific importance. Nanoparticles with high surface areas and ultra small particle sizes have dramatically enhanced efficiency and capacity of virus inactivation, which cannot be achieved by their bulk counterparts. A series of metal oxide nanoparticles, such as iron oxide nanoparticles, zinc oxide nanoparticles and iron oxide-silver nanoparticles, coated on fiber substrates was developed in this research for evaluation of their viricidal activity. We also carried out XRD, TEM, SEM, XPS, surface area measurements, and zeta potential of these nanoparticles. MS2 virus inactivation experiments showed that these metal oxide nanoparticle coated fibers were extremely powerful viricidal materials. Results from this research suggest that zinc oxide nanoparticles with diameter of 3.5 nm, showing an isoelectric point (IEP) at 9.0, were well dispersed on fiberglass. These fibers offer an increase in capacity by orders of magnitude over all other materials. Compared to iron oxide nanoparticles, zinc oxide nanoparticles didn’t show an improvement in inactivation kinetics but inactivation capacities did increase by two orders of magnitude to 99.99%. Furthermore, zinc oxide nanoparticles have higher affinity to viruses than the iron oxide nanoparticles in presence of competing ions. The advantages of zinc oxide depend on high surface charge density, small nanoparticle sizes and capabilities of generating reactive oxygen species. The research at its present stage of development appears to offer the best avenue to remove viruses from water. Without additional chemicals and energy input, this system can be implemented by both points of use (POU) and large-scale use water treatment technology, which will have a significant impact on the water purification industry. (2) A new family of aliphatic polyester lubricants has been developed for use in micro-electromechanical systems (MEMS), specifically for hard disk drives that operate at high spindle speeds (>15000rpm). Our program was initiated to address current problems with spin-off of the perfluoroether (PFPE) lubricants. The new polyester lubricant appears to alleviate spin-off problems and at the same time improves the chemical and thermal stability. This new system provides a low cost alternative to PFPE along with improved adhesion to the substrates. In addition, it displays a much lower viscosity, which may be of importance to stiction related problems. The synthetic route is readily scalable in case additional interest emerges in other areas including small motors. (3) The demand for increased signal transmission speed and device density for the next generation of multilevel integrated circuits has placed stringent demands on materials performance. Currently, integration of the ultra low-k materials in dual Damascene processing requires chemical mechanical polishing (CMP) to planarize the copper. Unfortunately, none of the commercially proposed dielectric candidates display the desired mechanical and thermal properties for successful CMP. A new polydiacetylene thermosetting polymer (DEB-TEB), which displays a low dielectric constant (low-k) of 2.7, was recently developed. This novel material appears to offer the only avenue for designing an ultra low k dielectric (1.85k), which can still display the desired modulus (7.7Gpa) and hardness (2.0Gpa) sufficient to withstand the process of CMP. We focused on further characterization of the thermal properties of spin-on poly (DEB-TEB) ultra-thin film. These include the coefficient of thermal expansion (CTE), biaxial thermal stress, and thermal conductivity. Thus the CTE is 2.0*10-5K-1 in the perpendicular direction and 8.0*10-6 K-1 in the planar direction. The low CTE provides a better match to the Si substrate which minimizes interfacial stress and greatly enhances the reliability of the microprocessors. Initial experiments with oxygen plasma etching suggest a high probability of success for achieving vertical profiles.