2 resultados para Fiber-based counterparts
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Fiber optical sensors have played an important role in applications for monitoring the health of civil infrastructures, such as bridges, oil rigs, and railroads. Due to the reduction in cost of fiber-optic components and systems, fiber optical sensors have been studied extensively for their higher sensitivity, precision and immunity to electrical interference compared to their electrical counterparts. A fiber Bragg grating (FBG) strain sensor has been employed for this study to detect and distinguish normal and lateral loads on rail tracks. A theoretical analysis of the relationship between strain and displacement under vertical and horizontal strains on an aluminum beam has been performed, and the results are in excellent agreement with the measured strain data. Then a single FBG sensor system with erbium-doped fiber amplifier broadband source has been carried out. Force and temperature applied on the system have resulted in changes of 0.05 nm per 50 με and 0.094 nm per 10 oC at the center wavelength of the FBG. Furthermore, a low cost fiber-optic sensor system with a distributed feedback (DFB) laser as the light source has been implemented. We show that it has superior noise and sensitivity performances compared to strain gauge sensors. The design has been extended to accommodate multiple sensors with negligible cross talk. When two cascaded sensors on a rail track section are tested, strain readings of the sensor 20 inches away from the position of applied force decay to one seventh of the data of the sensor at the applied force location. The two FBG sensor systems can detect 1 ton of vertical load with a square wave pattern and 0.1 ton of lateral loads (3 tons and 0.5 ton, respectively, for strain gauges). Moreover, a single FBG sensor has been found capable of detecting and distinguishing lateral and normal strains applied at different frequencies. FBG sensors are promising alternatives to electrical sensors for their high sensitivity,ease of installation, and immunity to electromagnetic interferences.
Resumo:
Aromatic thermosetting copolyester (ATSP) has promise in high-temperature applications. It can be employed as a bulk polymer, as a coating and as a matrix for carbon fiber composites (ATSP/C composites). This work focuses on the applications of high performance ATSP/C composites. The morphology of the ATSP matrix in the presence of carbon fiber was studied. The effect of liquid crystalline character of starting oligomers used to prepare ATSP on the final crystal structure of the ATSP/C composite was evaluated. Matrices obtained by crosslinking of both liquid crystalline oligomers (ATSP2) and non-liquid crystalline oligomers (ATSP1) tend to crystallize in presence of carbon fibers. The crystallite size of ATSP2 is 4 times that of ATSP1. Composites made from ATSP2 yield tougher matrices compared to those made from ATSP1. Thus toughened matrices could be achieved without incorporating any additives by just changing the morphology of the final polymer. The flammability characteristics of ATSP were also studied. The limiting oxygen index (LOI) of bulk ATSP was found to be 40% whereas that of ATSP/C composites is estimated to be 85%. Thus, ATSP shows potential to be used as a flame resistant material, and also as an aerospace reentry shield. Mechanical properties of the ATSP/C composite were characterized. ATSP was observed to bond strongly with reinforcing carbon fibers. The tensile strength, modulus and shear modulus were comparable to those of conventionally used high temperature epoxy resins. ATSP shows a unique capability for healing of interlaminar cracks on application of heat and pressure, via the Interchain Transesterification Reaction (ITR). ITR can also be used for reduction in void volume and healing of microcracks. Thus, ATSP resin systems provide a unique intrinsic repair mechanism compared to any other thermosetting systems in use today. Preliminary studies on measurement of residual stresses for ATSP/C composites indicate that the stresses induced are much lower than that in epoxy/C composites. Thermal fatigue testing suggests that ATSP shows better resistance to microcracking compared to epoxy resins.