2 resultados para Facial Object Based Method

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a way to gain greater insights into the operation of online communities, this dissertation applies automated text mining techniques to text-based communication to identify, describe and evaluate underlying social networks among online community members. The main thrust of the study is to automate the discovery of social ties that form between community members, using only the digital footprints left behind in their online forum postings. Currently, one of the most common but time consuming methods for discovering social ties between people is to ask questions about their perceived social ties. However, such a survey is difficult to collect due to the high investment in time associated with data collection and the sensitive nature of the types of questions that may be asked. To overcome these limitations, the dissertation presents a new, content-based method for automated discovery of social networks from threaded discussions, referred to as ‘name network’. As a case study, the proposed automated method is evaluated in the context of online learning communities. The results suggest that the proposed ‘name network’ method for collecting social network data is a viable alternative to costly and time-consuming collection of users’ data using surveys. The study also demonstrates how social networks produced by the ‘name network’ method can be used to study online classes and to look for evidence of collaborative learning in online learning communities. For example, educators can use name networks as a real time diagnostic tool to identify students who might need additional help or students who may provide such help to others. Future research will evaluate the usefulness of the ‘name network’ method in other types of online communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first part of the thesis describes a new patterning technique--microfluidic contact printing--that combines several of the desirable aspects of microcontact printing and microfluidic patterning and addresses some of their important limitations through the integration of a track-etched polycarbonate (PCTE) membrane. Using this technique, biomolecules (e.g., peptides, polysaccharides, and proteins) were printed in high fidelity on a receptor modified polyacrylamide hydrogel substrate. The patterns obtained can be controlled through modifications of channel design and secondary programming via selective membrane wetting. The protocols support the printing of multiple reagents without registration steps and fast recycle times. The second part describes a non-enzymatic, isothermal method to discriminate single nucleotide polymorphisms (SNPs). SNP discrimination using alkaline dehybridization has long been neglected because the pH range in which thermodynamic discrimination can be done is quite narrow. We found, however, that SNPs can be discriminated by the kinetic differences exhibited in the dehybridization of PM and MM DNA duplexes in an alkaline solution using fluorescence microscopy. We combined this method with multifunctional encoded hydrogel particle array (fabricated by stop-flow lithography) to achieve fast kinetics and high versatility. This approach may serve as an effective alternative to temperature-based method for analyzing unamplified genomic DNA in point-of-care diagnostic.