3 resultados para Expectations hypothesis of term struscture of interest rates

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Value and reasons for action are often cited by rationalists and moral realists as providing a desire-independent foundation for normativity. Those maintaining instead that normativity is dependent upon motivation often deny that anything called '"value" or "reasons" exists. According to the interest-relational theory, something has value relative to some perspective of desire just in case it satisfies those desires, and a consideration is a reason for some action just in case it indicates that something of value will be accomplished by that action. Value judgements therefore describe real properties of objects and actions, but have no normative significance independent of desires. It is argued that only the interest-relational theory can account for the practical significance of value and reasons for action. Against the Kantian hypothesis of prescriptive rational norms, I attack the alleged instrumental norm or hypothetical imperative, showing that the normative force for taking the means to our ends is explicable in terms of our desire for the end, and not as a command of reason. This analysis also provides a solution to the puzzle concerning the connection between value judgement and motivation. While it is possible to hold value judgements without motivation, the connection is more than accidental. This is because value judgements are usually but not always made from the perspective of desires that actually motivate the speaker. In the normal case judgement entails motivation. But often we conversationally borrow external perspectives of desire, and subsequent judgements do not entail motivation. This analysis drives a critique of a common practice as a misuse of normative language. The "absolutist" attempts to use and, as philosopher, analyze normative language in such a way as to justify the imposition of certain interests over others. But these uses and analyses are incoherent - in denying relativity to particular desires they conflict with the actual meaning of these utterances, which is always indexed to some particular set of desires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the relationship between heterogeneous nucleate boiling surfaces and deposition of suspended metallic colloidal particles, popularly known as crud or corrosion products in process industries, on those heterogeneous sites is investigated. Various researchers have reported that hematite is a major constituent of crud which makes it the primary material of interest; however the models developed in this work are irrespective of material choice. Qualitative hypotheses on the deposition process under boiling as proposed by previous researchers have been tested, which fail to provide explanations for several physical mechanisms observed and analyzed. In this study a quantitative model of deposition rate has been developed on the basis of bubble dynamics and colloid-surface interaction potential. Boiling from a heating surface aids in aggregation of the metallic particulates viz. nano-particles, crud particulate, etc. suspended in a liquid, which helps in transporting them to heating surfaces. Consequently, clusters of particles deposit onto the heating surfaces due to various interactive forces, resulting in formation of porous or impervious layers. The deposit layer grows or recedes depending upon variations in interparticle and surface forces, fluid shear, fluid chemistry, etc. This deposit layer in turn affects the rate of bubble generation, formation of porous chimneys, critical heat flux (CHF) of surfaces, activation and deactivation of nucleation sites on the heating surfaces. Several problems are posed due to the effect of boiling on colloidal deposition, which range from research initiatives involving nano-fluids as a heat transfer medium to industrial applications such as light water nuclear reactors. In this study, it is attempted to integrate colloid and surface science with vapor bubble dynamics, boiling heat transfer and evaporation rate. Pool boiling experiments with dilute metallic colloids have been conducted to investigate several parameters impacting the system. The experimental data available in the literature is obtained by flow experiments, which do not help in correlating boiling mechanism with the deposition amount or structure. With the help of experimental evidences and analysis, previously proposed hypothesis for particle transport to the contact line due to hydrophobicity has been challenged. The experimental observations suggest that deposition occurs around the bubble surface contact line and extends underneath area of the bubble microlayer as well. During the evaporation the concentration gradient of a non-volatile species is created, which induces osmotic pressure. The osmotic pressure developed inside the microlayer draws more particles inside the microlayer region or towards contact line. The colloidal escape time is slower than the evaporation time, which leads to the aggregation of particles in the evaporating micro-layer. These aggregated particles deposit onto or are removed from the heating surface, depending upon their total interaction potential. Interaction potential has been computed with the help of surface charge and van der Waals potential for the materials in aqueous solutions. Based upon the interaction-force boundary layer thickness, which is governed by debye radius (or ionic concentration and pH), a simplified quantitative model for the attachment kinetics is proposed. This attachment kinetics model gives reasonable results in predicting attachment rate against data reported by previous researchers. The attachment kinetics study has been done for different pH levels and particle sizes for hematite particles. Quantification of colloidal transport under boiling scenarios is done with the help of overall average evaporation rates because generally waiting times for bubbles at the same position is much larger than growth times. In other words, from a larger measurable scale perspective, frequency of bubbles dictates the rate of collection of particles rather than evaporation rate during micro-layer evaporation of one bubble. The combination of attachment kinetics and colloidal transport kinetics has been used to make a consolidated model for prediction of the amount of deposition and is validated with the help of high fidelity experimental data. In an attempt to understand and explain boiling characteristics, high speed visualization of bubble dynamics from a single artificial large cavity and multiple naturally occurring cavities is conducted. A bubble growth and departure dynamics model is developed for artificial active sites and is validated with the experimental data. The variation of bubble departure diameter with wall temperature is analyzed with experimental results and shows coherence with earlier studies. However, deposit traces after boiling experiments show that bubble contact diameter is essential to predict bubble departure dynamics, which has been ignored previously by various researchers. The relationship between porosity of colloid deposits and bubbles under the influence of Jakob number, sub-cooling and particle size has been developed. This also can be further utilized in variational wettability of the surface. Designing porous surfaces can having vast range of applications varying from high wettability, such as high critical heat flux boilers, to low wettability, such as efficient condensers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of convective heat transfer in enclosures under high ventilative flow rates is primarily of interest for building design and simulation purposes. Current models are based on experiments performed forty years ago with flat plates under natural convection conditions.