2 resultados para Endocrinology and Metabolism

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Placenta, as the sole transport mechanism between mother and fetus, links the maternal physical state and the immediate and life-long outcomes of the offspring. The present study examined the mechanisms behind the effect of maternal obesity on placental lipid accumulation and metabolism. Pregnant Obese Prone (OP) and Obese Resistant (OR) rat strains were fed a control diet throughout gestation. Placentas were collected on gestational d21 for analysis and frozen placental sections were analyzed for fat accumulation as well as β-Catenin and Dkk1 localization. Additionally, DKK1 was overexpressed in JEG3 trophoblast cells, followed by treatment with NEFA and Oil Red O stain quantification and mRNA analysis to determine the relationship between placental DKK1 and lipid accumulation. Maternal plasma and placental NEFA and TG were elevated in OP dams, and offspring of OP dams were smaller than OR. Placental Dkk1 mRNA content was 4-fold lower in OP placentas, and there was a significant increase in β-Catenin accumulation as well as mRNA content of fat transport and TG synthesis enzymes, including Ppar-delta, Fatp1, Fat/Cd36, Lipin1, and Lipin3. There was significant lipid accumulation within the decidual zones in OP but not OR placentas, and the thickness of the decidual and junctional zones was significantly smaller in OP than OR placentas. Overexpression of DKK1 in JEG3 cells decreased lipid accumulation and the mRNA content of PPAR-Delta, FATP1, FAT/CD36, LIPIN1, and LIPIN3. Our results indicate that Dkk1 may be regulating placental lipid metabolism through Wnt-mediated mechanisms. Additionally, recent studies have suggested that maternal obesity may also program early development of non-alcoholic fatty liver disease (NAFLD), rates of which have correlated with the increase in the obesity epidemic. In the current study, livers of OP offspring had significantly increased TG content (P<0.05) and lipid accumulation when compared to offspring of OR dams. Additionally, hepatic Dkk1 mRNA content was significantly decreased in OP livers when compared to OR (P<0.05), and treating H4IIECR rat hepatocyte cells with NEFA showed that Dkk1 mRNA was also decreased in NEFA-treated cells (P<0.05) that also had lipid accumulation. Chromatin Immunoprecipitation (ChIP) analysis of the Dkk1 promoter in fetal livers showed a pattern of histone modifications associated with decreased gene transcription in OP offspring, which agrees with our gene expression data. These results demonstrate that the hepatic Dkk1 gene is epigenetically regulated via histone modification in neonatal offspring in the current model of gestational obesity, and future studies will be needed to determine whether these changes contribute to excessive hepatic lipid accumulation in offspring of obese dams.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen (N) is an essential plant nutrient in maize production, and if considering only natural sources, is often the limiting factor world-wide in terms of a plant’s grain yield. For this reason, many farmers around the world supplement available soil N with synthetic man-made forms. Years of over-application of N fertilizer have led to increased N in groundwater and streams due to leaching and run-off from agricultural sites. In the Midwest Corn Belt much of this excess N eventually makes its way to the Gulf of Mexico leading to eutrophication (increase of phytoplankton) and a hypoxic (reduced oxygen) dead zone. Growing concerns about these types of problems and desire for greater input use efficiency have led to demand for crops with improved N use efficiency (NUE) to allow reduced N fertilizer application rates and subsequently lower N pollution. It is well known that roots are responsible for N uptake by plants, but it is relatively unknown how root architecture affects this ability. This research was conducted to better understand the influence of root complexity (RC) in maize on a plant’s response to N stress as well as the influence of RC on other above-ground plant traits. Thirty-one above-ground plant traits were measured for 64 recombinant inbred lines (RILs) from the intermated B73 & Mo17 (IBM) population and their backcrosses (BCs) to either parent, B73 and Mo17, under normal (182 kg N ha-1) and N deficient (0 kg N ha-1) conditions. The RILs were selected based on results from an earlier experiment by Novais et al. (2011) which screened 232 RILs from the IBM to obtain their root complexity measurements. The 64 selected RILs were comprised of 31 of the lowest complexity RILs (RC1) and 33 of the highest complexity RILs (RC2) in terms of root architecture (characterized as fractal dimensions). The use of the parental BCs classifies the experiment as Design III, an experimental design developed by Comstock and Robinson (1952) which allows for estimation of dominance significance and level. Of the 31 traits measured, 12 were whole plant traits chosen due to their documented response to N stress. The other 19 traits were ear traits commonly measured for their influence on yield. Results showed that genotypes from RC1 and RC2 significantly differ for several above-ground phenotypes. We also observed a difference in the number and magnitude of N treatment responses between the two RC classes. Differences in phenotypic trait correlations and their change in response to N were also observed between the RC classes. RC did not seem to have a strong correlation with calculated NUE (ΔYield/ΔN). Quantitative genetic analysis utilizing the Design III experimental design revealed significant dominance effects acting on several traits as well as changes in significance and dominance level between N treatments. Several QTL were mapped for 26 of the 31 traits and significant N effects were observed across the majority of the genome for some N stress indicative traits (e.g. stay-green). This research and related projects are essential to a better understanding of plant N uptake and metabolism. Understanding these processes is a necessary step in the progress towards the goal of breeding for better NUE crops.