3 resultados para Edge detectors

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite record-setting performance demonstrated by superconducting Transition Edge Sensors (TESs) and growing utilization of the technology, a theoretical model of the physics governing TES devices superconducting phase transition has proven elusive. Earlier attempts to describe TESs assumed them to be uniform superconductors. Sadleir et al. 2010 shows that TESs are weak links and that the superconducting order parameter strength has significant spatial variation. Measurements are presented of the temperature T and magnetic field B dependence of the critical current Ic measured over 7 orders of magnitude on square Mo/Au bilayers ranging in length from 8 to 290 microns. We find our measurements have a natural explanation in terms of a spatially varying order parameter that is enhanced in proximity to the higher transition temperature superconducting leads (the longitudinal proximity effect) and suppressed in proximity to the added normal metal structures (the lateral inverse proximity effect). These in-plane proximity effects and scaling relations are observed over unprecedentedly long lengths (in excess of 1000 times the mean free path) and explained in terms of a Ginzburg-Landau model. Our low temperature Ic(B) measurements are found to agree with a general derivation of a superconducting strip with an edge or geometric barrier to vortex entry and we also derive two conditions that lead to Ic rectification. At high temperatures the Ic(B) exhibits distinct Josephson effect behavior over long length scales and following functional dependences not previously reported. We also investigate how film stress changes the transition, explain some transition features in terms of a nonequilibrium superconductivity effect, and show that our measurements of the resistive transition are not consistent with a percolating resistor network model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sharpening is a powerful image transformation because sharp edges can bring out image details. Sharpness is achieved by increasing local contrast and reducing edge widths. We present a method that enhances sharpness of images and thereby their perceptual quality. Most existing enhancement techniques require user input to improve the perception of the scene in a manner most pleasing to the particular user. Our goal of image enhancement is to improve the perception of sharpness in digital images for human viewers. We consider two parameters in order to exaggerate the differences between local intensities. The two parameters exploit local contrast and widths of edges. We start from the assumption that color, texture, or objects of focus such as faces affect the human perception of photographs. When human raters are presented with a collection of images with different sharpness and asked to rank them according to perceived sharpness, the results have shown that there is a statistical consensus among the raters. We introduce a ramp enhancement technique by modifying the optimal overshoot in the ramp for different region contrasts as well as the new ramp width. Optimal parameter values are searched to be applied to regions under the criteria mentioned above. In this way, we aim to enhance digital images automatically to create pleasing image output for common users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous applications within the mid- and long-wavelength infrared are driving the search for efficient and cost effective detection technologies in this regime. Theoretical calculations have predicted high performance for InAs/GaSb type-II superlattice structures, which rely on mature growth of III-V semiconductors and offer many levels of freedom in design due to band structure engineering. This work focuses on the fabrication and characterization of type-II superlattice infrared detectors. Standard UV-based photolithography was used combined with chemical wet or dry etching techniques in order to fabricate antinomy-based type-II superlattice infrared detectors. Subsequently, Fourier transform infrared spectroscopy and radiometric techniques were applied for optical characterization in order to obtain a detector's spectrum and response, as well as the overall detectivity in combination with electrical characterization. Temperature dependent electrical characterization was used to extract information about the limiting dark current processes. This work resulted in the first demonstration of an InAs/GaSb type-II superlattice infrared photodetector grown by metalorganic chemical vapor deposition. A peak detectivity of 1.6x10^9 Jones at 78 K was achieved for this device with a 11 micrometer zero cutoff wavelength. Furthermore the interband tunneling detector designed for the mid-wavelength infrared regime was studied. Similar results to those previously published were obtained.