3 resultados para ETL Conceptual and Logical Modeling

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of steel and composite frames has traditionally been carried out by idealizing beam-to-column connections as either rigid or pinned. Although some advanced analysis methods have been proposed to account for semi-rigid connections, the performance of these methods strongly depends on the proper modeling of connection behavior. The primary challenge of modeling beam-to-column connections is their inelastic response and continuously varying stiffness, strength, and ductility. In this dissertation, two distinct approaches—mathematical models and informational models—are proposed to account for the complex hysteretic behavior of beam-to-column connections. The performance of the two approaches is examined and is then followed by a discussion of their merits and deficiencies. To capitalize on the merits of both mathematical and informational representations, a new approach, a hybrid modeling framework, is developed and demonstrated through modeling beam-to-column connections. Component-based modeling is a compromise spanning two extremes in the field of mathematical modeling: simplified global models and finite element models. In the component-based modeling of angle connections, the five critical components of excessive deformation are identified. Constitutive relationships of angles, column panel zones, and contact between angles and column flanges, are derived by using only material and geometric properties and theoretical mechanics considerations. Those of slip and bolt hole ovalization are simplified by empirically-suggested mathematical representation and expert opinions. A mathematical model is then assembled as a macro-element by combining rigid bars and springs that represent the constitutive relationship of components. Lastly, the moment-rotation curves of the mathematical models are compared with those of experimental tests. In the case of a top-and-seat angle connection with double web angles, a pinched hysteretic response is predicted quite well by complete mechanical models, which take advantage of only material and geometric properties. On the other hand, to exhibit the highly pinched behavior of a top-and-seat angle connection without web angles, a mathematical model requires components of slip and bolt hole ovalization, which are more amenable to informational modeling. An alternative method is informational modeling, which constitutes a fundamental shift from mathematical equations to data that contain the required information about underlying mechanics. The information is extracted from observed data and stored in neural networks. Two different training data sets, analytically-generated and experimental data, are tested to examine the performance of informational models. Both informational models show acceptable agreement with the moment-rotation curves of the experiments. Adding a degradation parameter improves the informational models when modeling highly pinched hysteretic behavior. However, informational models cannot represent the contribution of individual components and therefore do not provide an insight into the underlying mechanics of components. In this study, a new hybrid modeling framework is proposed. In the hybrid framework, a conventional mathematical model is complemented by the informational methods. The basic premise of the proposed hybrid methodology is that not all features of system response are amenable to mathematical modeling, hence considering informational alternatives. This may be because (i) the underlying theory is not available or not sufficiently developed, or (ii) the existing theory is too complex and therefore not suitable for modeling within building frame analysis. The role of informational methods is to model aspects that the mathematical model leaves out. Autoprogressive algorithm and self-learning simulation extract the missing aspects from a system response. In a hybrid framework, experimental data is an integral part of modeling, rather than being used strictly for validation processes. The potential of the hybrid methodology is illustrated through modeling complex hysteretic behavior of beam-to-column connections. Mechanics-based components of deformation such as angles, flange-plates, and column panel zone, are idealized to a mathematical model by using a complete mechanical approach. Although the mathematical model represents envelope curves in terms of initial stiffness and yielding strength, it is not capable of capturing the pinching effects. Pinching is caused mainly by separation between angles and column flanges as well as slip between angles/flange-plates and beam flanges. These components of deformation are suitable for informational modeling. Finally, the moment-rotation curves of the hybrid models are validated with those of the experimental tests. The comparison shows that the hybrid models are capable of representing the highly pinched hysteretic behavior of beam-to-column connections. In addition, the developed hybrid model is successfully used to predict the behavior of a newly-designed connection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objectives of this dissertation were: (i) to develop experimental and analytical procedures to quantify different physico-chemical properties of the ultra-thin (~ 100 nm) active layers of reverse osmosis (RO) and nanofiltration (NF) membranes and their interactions with contaminants; (ii) to use such procedures to evaluate the similarities and differences between the active layers of different RO/NF membranes; and (iii) to relate characterization results to membrane performance. Such objectives were motivated by the current limited understanding of the physico-chemical properties of active layers as a result of traditional characterization techniques having limitations associated with the nanometer-scale spatial resolution required to study these ultra-thin films. Functional groups were chosen as the main active layer property of interest. Specific accomplishments of this study include the development of procedures to quantify in active layers as a function of pH: (1) the concentration of both negatively and positively ionized functional groups; (2) the stoichiometry of association between ions (i.e., barium) and ionized functional groups (i.e., carboxylate and sulfonate); and (3) the steric effects experienced by ions (i.e., barium). Conceptual and mathematical models were developed to describe experimental results. The depth heterogeneity of the active layer physico-chemical properties and interactions with contaminants studied in this dissertation was also characterized. Additionally, measured concentrations of ionized functional groups in the polyamide active layers of several commercial RO/NF membranes were used as input in a simplified RO/NF transport model to predict the rejection of a strong electrolyte (i.e., potassium iodide) and a weak acid (i.e., arsenious acid) at different pH values based on rejection results at one pH condition. The good agreement between predicted and experimental results showed that the characterization procedures developed in this study serve as useful tools in the advancement of the understanding of the properties and structure of the active layers of RO/NF membranes, and the mechanisms of contaminant transport through them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems in subject access to information organization systems have been under investigation for a long time. Focusing on item-level information discovery and access, researchers have identified a range of subject access problems, including quality and application of metadata, as well as the complexity of user knowledge required for successful subject exploration. While aggregations of digital collections built in the United States and abroad generate collection-level metadata of various levels of granularity and richness, no research has yet focused on the role of collection-level metadata in user interaction with these aggregations. This dissertation research sought to bridge this gap by answering the question “How does collection-level metadata mediate scholarly subject access to aggregated digital collections?” This goal was achieved using three research methods: • in-depth comparative content analysis of collection-level metadata in three large-scale aggregations of cultural heritage digital collections: Opening History, American Memory, and The European Library • transaction log analysis of user interactions, with Opening History, and • interview and observation data on academic historians interacting with two aggregations: Opening History and American Memory. It was found that subject-based resource discovery is significantly influenced by collection-level metadata richness. The richness includes such components as: 1) describing collection’s subject matter with mutually-complementary values in different metadata fields, and 2) a variety of collection properties/characteristics encoded in the free-text Description field, including types and genres of objects in a digital collection, as well as topical, geographic and temporal coverage are the most consistently represented collection characteristics in free-text Description fields. Analysis of user interactions with aggregations of digital collections yields a number of interesting findings. Item-level user interactions were found to occur more often than collection-level interactions. Collection browse is initiated more often than search, while subject browse (topical and geographic) is used most often. Majority of collection search queries fall within FRBR Group 3 categories: object, concept, and place. Significantly more object, concept, and corporate body searches and less individual person, event and class of persons searches were observed in collection searches than in item searches. While collection search is most often satisfied by Description and/or Subjects collection metadata fields, it would not retrieve a significant proportion of collection records without controlled-vocabulary subject metadata (Temporal Coverage, Geographic Coverage, Subjects, and Objects), and free-text metadata (the Description field). Observation data shows that collection metadata records in Opening History and American Memory aggregations are often viewed. Transaction log data show a high level of engagement with collection metadata records in Opening History, with the total page views for collections more than 4 times greater than item page views. Scholars observed viewing collection records valued descriptive information on provenance, collection size, types of objects, subjects, geographic coverage, and temporal coverage information. They also considered the structured display of collection metadata in Opening History more useful than the alternative approach taken by other aggregations, such as American Memory, which displays only the free-text Description field to the end-user. The results extend the understanding of the value of collection-level subject metadata, particularly free-text metadata, for the scholarly users of aggregations of digital collections. The analysis of the collection metadata created by three large-scale aggregations provides a better understanding of collection-level metadata application patterns and suggests best practices. This dissertation is also the first empirical research contribution to test the FRBR model as a conceptual and analytic framework for studying collection-level subject access.