2 resultados para Droplet spectra

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations of droplet dispersion behind cylinder wakes and downstream of icing tunnel spray bars were conducted. In both cases, a range of droplet sizes were investigated numerically with a Lagrangian particle trajectory approach while the turbulent air flow was investigated with a hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations approach scheme. In the first study, droplets were injected downstream of a cylinder at sub-critical conditions (i.e. with laminar boundary layer separation). A stochastic continuous random walk (CRW) turbulence model was used to capture the effects of sub-grid turbulence. Small inertia droplets (characterized by small Stokes numbers) were affected by both the large-scale and small-scale vortex structures and closely followed the air flow, while exhibiting a dispersion consistent with that of a scalar flow field. Droplets with intermediate Stokes numbers were centrifuged by the vortices to the outer edges of the wake, yielding an increased dispersion. Large Stokes number droplets were found to be less responsive to the vortex structures and exhibited the least dispersion. Particle concentration was also correlated with vorticity distribution which yielded preferential bias effects as a function of different particle sizes. This trend was qualitatively similar to results seen in homogenous isotropic turbulence, though the influence of particle inertia was less pronounced for the cylinder wake case. A similar study was completed for droplet dispersion within the Icing Research Tunnel (IRT) at the NASA Glenn Research Center, where it is important to obtain a nearly uniform liquid water content (LWC) distribution in the test section (to recreate atmospheric icing conditions).. For this goal, droplets are diffused by the mean and turbulent flow generated from the nozzle air jets, from the upstream spray bars, and from the vertical strut wakes. To understand the influence of these three components, a set of simulations was conducted with a sequential inclusion of these components. Firstly, a jet in an otherwise quiescent airflow was simulated to capture the impact of the air jet on flow turbulence and droplet distribution, and the predictions compared well with experimental results. The effects of the spray bar wake and vertical strut wake were then included with two more simulation conditions, for which it was found that the air jets were the primary driving force for droplet dispersion, i.e. that the spray bar and vertical strut wake effects were secondary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent excitation spectra were measured for the F and M centers in KCl; in particular, for the F band, M band, and the M2 transition. In all 3 cases, the spectra were nearly double-Gaussian in shape, and the efficiency for luminescence was nearly independent of the wavelength of the exciting light. A comparison of the absorption spectrum with the excitation spectrum of the F-band region of crystals with M centers present and oriented provided further evidence for the existence of the M2 transition of van Doorn and Haven and of Okamoto, and against the energy transfer theory of Lambe and Compton. The efficiency for luminescence of the M center upon M-band excitation was equal to the efficiency for F centers in pulse-annealed crystals of low F-center concentrations. The ratio of the efficiencies of the Ml to M2 transitions was 1.2 ± .25. The oscillator strengths of 3 of the M-center transitions in KCl relative to the oscillator strength for the F center were found to be in better agreement with the results reported by Okamoto, than with the results reported by Delbecq. The polarization of luminescence of M centers in KCl was measured at right angles to the exciting light, and was found to agree with the predictions of the van Doorn-Haven model of the M center. In NaF crystals having no absorption bands to the red side of the M band, the absorption and excitation spectra of the M band were accurately double-Gaussian over a wide range of wavelengths; the efficiency of luminescence of the M center was independent of the wavelength of the exciting light in that range; and the polarization of luminescence upon M-band excitation agreed well with the calculations based on the van DoornHaven model of the M center, In crystals in which the F band was bleached sufficiently to make it smaller in absorption height than the M band, several new color centers appeared on the red side of the M band, in contrast to the results reported by Blum; in these crystals, the polarization of luminescence of the M center upon M-band excitation disagreed strongly with theory, even though the absorptions for the new color centers were small compared to the M-band absorption.