2 resultados para Discrete Conditional Phase-type model
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Embryo implantation into the endometrium is a complex biological process involving the integration of steroid hormone signaling, endometrial tissue remodeling and maternal- fetal communications. A successful pregnancy is the outcome of the timely integration of these events during the early stages of implantation. The involvement of ovarian steroid hormones, estrogen (E) and progesterone (P), acting through their cognate receptors, is essential for uterine functions during pregnancy. The molecular mechanisms that control the process of implantation are undergoing active exploration. Through our recent efforts, we identified the transcription factor, CCAAT Enhancer Binding Protein Beta (C/EBPb) as a prominent target of estrogen and progesterone signaling in the uterus. The development of a C/EBPb-null mouse model, which is infertile, presented us with an opportunity to analyze the role of this molecule in uterine function. We discovered that C/EBPb functions in two distinct manners: (i) by acting as a mediator of E-induced proliferation of the uterine epithelium and (ii) by controlling uterine stromal cell differentiation, a process known as decidualization, during pregnancy. My studies have delineated important mechanisms by which E regulates C/EBPb expression to induce DNA replication and prevent apoptosis of uterine epithelial cells during E-induced epithelial growth. In subsequent studies, I analyzed the role of C/EBPb in decidualization and uncovered a unique mechanism by which C/EBPb regulates the synthesis of a unique laminin-containing extracellular matrix (ECM) that supports stromal cell differentiation and embryo invasion. In order to better define the role of laminin in implantation, we developed a laminin gamma 1-conditional knockout mouse model. This is currently an area of ongoing investigation. The information gained from our analysis of C/EBPb function in the uterus provides new insights into the mechanisms of steroid hormone action during early pregnancy. Ultimately, our findings may aid in the understanding of dysregulation of hormone-controlled pathways that underlie early pregnancy loss and infertility in women.
Resumo:
A detailed non-equilibrium state diagram of shape-anisotropic particle fluids is constructed. The effects of particle shape are explored using Naive Mode Coupling Theory (NMCT), and a single particle Non-linear Langevin Equation (NLE) theory. The dynamical behavior of non-ergodic fluids are discussed. We employ a rotationally frozen approach to NMCT in order to determine a transition to center of mass (translational) localization. Both ideal and kinetic glass transitions are found to be highly shape dependent, and uniformly increase with particle dimensionality. The glass transition volume fraction of quasi 1- and 2- dimensional particles fall monotonically with the number of sites (aspect ratio), while 3-dimensional particles display a non-monotonic dependence of glassy vitrification on the number of sites. Introducing interparticle attractions results in a far more complex state diagram. The ideal non-ergodic boundary shows a glass-fluid-gel re-entrance previously predicted for spherical particle fluids. The non-ergodic region of the state diagram presents qualitatively different dynamics in different regimes. They are qualified by the different behaviors of the NLE dynamic free energy. The caging dominated, repulsive glass regime is characterized by long localization lengths and barrier locations, dictated by repulsive hard core interactions, while the bonding dominated gel region has short localization lengths (commensurate with the attraction range), and barrier locations. There exists a small region of the state diagram which is qualified by both glassy and gel localization lengths in the dynamic free energy. A much larger (high volume fraction, and high attraction strength) region of phase space is characterized by short gel-like localization lengths, and long barrier locations. The region is called the attractive glass and represents a 2-step relaxation process whereby a particle first breaks attractive physical bonds, and then escapes its topological cage. The dynamic fragility of fluids are highly particle shape dependent. It increases with particle dimensionality and falls with aspect ratio for quasi 1- and 2- dimentional particles. An ultralocal limit analysis of the NLE theory predicts universalities in the behavior of relaxation times, and elastic moduli. The equlibrium phase diagram of chemically anisotropic Janus spheres and Janus rods are calculated employing a mean field Random Phase Approximation. The calculations for Janus rods are corroborated by the full liquid state Reference Interaction Site Model theory. The Janus particles consist of attractive and repulsive regions. Both rods and spheres display rich phase behavior. The phase diagrams of these systems display fluid, macrophase separated, attraction driven microphase separated, repulsion driven microphase separated and crystalline regimes. Macrophase separation is predicted in highly attractive low volume fraction systems. Attraction driven microphase separation is charaterized by long length scale divergences, where the ordering length scale determines the microphase ordered structures. The ordering length scale of repulsion driven microphase separation is determined by the repulsive range. At the high volume fractions, particles forgo the enthalpic considerations of attractions and repulsions to satisfy hard core constraints and maximize vibrational entropy. This results in site length scale ordering in rods, and the sphere length scale ordering in Janus spheres, i.e., crystallization. A change in the Janus balance of both rods and spheres results in quantitative changes in spinodal temperatures and the position of phase boundaries. However, a change in the block sequence of Janus rods causes qualitative changes in the type of microphase ordered state, and induces prominent features (such as the Lifshitz point) in the phase diagrams of these systems. A detailed study of the number of nearest neighbors in Janus rod systems reflect a deep connection between this local measure of structure, and the structure factor which represents the most global measure of order.