2 resultados para DRIVING-FORCE

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Simulations of droplet dispersion behind cylinder wakes and downstream of icing tunnel spray bars were conducted. In both cases, a range of droplet sizes were investigated numerically with a Lagrangian particle trajectory approach while the turbulent air flow was investigated with a hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations approach scheme. In the first study, droplets were injected downstream of a cylinder at sub-critical conditions (i.e. with laminar boundary layer separation). A stochastic continuous random walk (CRW) turbulence model was used to capture the effects of sub-grid turbulence. Small inertia droplets (characterized by small Stokes numbers) were affected by both the large-scale and small-scale vortex structures and closely followed the air flow, while exhibiting a dispersion consistent with that of a scalar flow field. Droplets with intermediate Stokes numbers were centrifuged by the vortices to the outer edges of the wake, yielding an increased dispersion. Large Stokes number droplets were found to be less responsive to the vortex structures and exhibited the least dispersion. Particle concentration was also correlated with vorticity distribution which yielded preferential bias effects as a function of different particle sizes. This trend was qualitatively similar to results seen in homogenous isotropic turbulence, though the influence of particle inertia was less pronounced for the cylinder wake case. A similar study was completed for droplet dispersion within the Icing Research Tunnel (IRT) at the NASA Glenn Research Center, where it is important to obtain a nearly uniform liquid water content (LWC) distribution in the test section (to recreate atmospheric icing conditions).. For this goal, droplets are diffused by the mean and turbulent flow generated from the nozzle air jets, from the upstream spray bars, and from the vertical strut wakes. To understand the influence of these three components, a set of simulations was conducted with a sequential inclusion of these components. Firstly, a jet in an otherwise quiescent airflow was simulated to capture the impact of the air jet on flow turbulence and droplet distribution, and the predictions compared well with experimental results. The effects of the spray bar wake and vertical strut wake were then included with two more simulation conditions, for which it was found that the air jets were the primary driving force for droplet dispersion, i.e. that the spray bar and vertical strut wake effects were secondary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquid-solid interactions become important as dimensions approach mciro/nano-scale. This dissertation focuses on liquid-solid interactions in two distinct applications: capillary driven self-assembly of thin foils into 3D structures, and droplet wetting of hydrophobic micropatterned surfaces. The phenomenon of self-assembly of complex structures is common in biological systems. Examples include self-assembly of proteins into macromolecular structures and self-assembly of lipid bilayer membranes. The principles governing this phenomenon have been applied to induce self-assembly of millimeter scale Si thin films into spherical and other 3D structures, which are then integrated into light-trapping photovoltaic (PV) devices. Motivated by this application, we present a generalized analytical study of the self-folding of thin plates into deterministic 3D shapes, through fluid-solid interactions, to be used as PV devices. This study consists of developing a model using beam theory, which incorporates the two competing components — a capillary force that promotes folding and the bending rigidity of the foil that resists folding into a 3D structure. Through an equivalence argument of thin foils of different geometry, an effective folding parameter, which uniquely characterizes the driving force for folding, has been identified. A criterion for spontaneous folding of an arbitrarily shaped 2D foil, based on the effective folding parameter, is thus established. Measurements from experiments using different materials and predictions from the model match well, validating the assumptions used in the analysis. As an alternative to the mechanics model approach, the minimization of the total free energy is employed to investigate the interactions between a fluid droplet and a flexible thin film. A 2D energy functional is proposed, comprising the surface energy of the fluid, bending energy of the thin film and gravitational energy of the fluid. Through simulations with Surface Evolver, the shapes of the droplet and the thin film at equilibrium are obtained. A critical thin film length necessary for complete enclosure of the fluid droplet, and hence successful self-assembly into a PV device, is determined and compared with the experimental results and mechanics model predictions. The results from the modeling and energy approaches and the experiments are all consistent. Superhydrophobic surfaces, which have unique properties including self-cleaning and water repelling are desired in many applications. One excellent example in nature is the lotus leaf. To fabricate these surfaces, well designed micro/nano- surface structures are often employed. In this research, we fabricate superhydrophobic micropatterned Polydimethylsiloxane (PDMS) surfaces composed of micropillars of various sizes and arrangements by means of soft lithography. Both anisotropic surfaces, consisting of parallel grooves and cylindrical pillars in rectangular lattices, and isotropic surfaces, consisting of cylindrical pillars in square and hexagonal lattices, are considered. A novel technique is proposed to image the contact line (CL) of the droplet on the hydrophobic surface. This technique provides a new approach to distinguish between partial and complete wetting. The contact area between droplet and microtextured surface is then measured for a droplet in the Cassie state, which is a state of partial wetting. The results show that although the droplet is in the Cassie state, the contact area does not necessarily follow Cassie model predictions. Moreover, the CL is not circular, and is affected by the micropatterns, in both isotropic and anisotropic cases. Thus, it is suggested that along with the contact angle — the typical parameter reported in literature quantifying wetting, the size and shape of the contact area should also be presented. This technique is employed to investigate the evolution of the CL on a hydrophobic micropatterned surface in the cases of: a single droplet impacting the micropatterned surface, two droplets coalescing on micropillars, and a receding droplet resting on the micropatterned surface. Another parameter which quantifies hydrophobicity is the contact angle hysteresis (CAH), which indicates the resistance of the surface to the sliding of a droplet with a given volume. The conventional methods of using advancing and receding angles or tilting stage to measure the resistance of the micropatterned surface are indirect, without mentioning the inaccuracy due to the discrete and stepwise motion of the CL on micropillars. A micronewton force sensor is utilized to directly measure the resisting force by dragging a droplet on a microtextured surface. Together with the proposed imaging technique, the evolution of the CL during sliding is also explored. It is found that, at the onset of sliding, the CL behaves as a linear elastic solid with a constant stiffness. Afterwards, the force first increases and then decreases and reaches a steady state, accompanied with periodic oscillations due to regular pinning and depinning of the CL. Both the maximum and steady state forces are primarily dependent on area fractions of the micropatterned surfaces in our experiment. The resisting force is found to be proportional to the number of pillars which pin the CL at the trailing edge, validating the assumption that the resistance mainly arises from the CL pinning at the trailing edge. In each pinning-and-depinning cycle during the steady state, the CL also shows linear elastic behavior but with a lower stiffness. The force variation and energy dissipation involved can also be determined. This novel method of measuring the resistance of the micropatterned surface elucidates the dependence on CL pinning and provides more insight into the mechanisms of CAH.