2 resultados para CELL-DIFFERENTIATION

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this dissertation, there are developed different analytical strategies to discover and characterize mammalian brain peptides using small amount of tissues. The magnocellular neurons of rat supraoptic nucleus in tissue and cell culture served as the main model to study neuropeptides, in addition to hippocampal neurons and mouse embryonic pituitaries. The neuropeptidomcis studies described here use different extraction methods on tissue or cell culture combined with mass spectrometry (MS) techniques, matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). These strategies lead to the identification of multiple peptides from the rat/mouse brain in tissue and cell cultures, including novel compounds One of the goals in this dissertation was to optimize sample preparations on samples isolated from well-defined brain regions for mass spectrometric analysis. Here, the neuropeptidomics study of the SON resulted in the identification of 85 peptides, including 20 unique peptides from known prohormones. This study includes mass spectrometric analysis even from individually isolated magnocellular neuroendocrine cells, where vasopressin and several other peptides are detected. At the same time, it was shown that the same approach could be applied to analyze peptides isolated from a similar hypothalamic region, the suprachiasmatic nucleus (SCN). Although there were some overlaps regarding the detection of the peptides in the two brain nuclei, different peptides were detected specific to each nucleus. Among other peptides, provasopressin fragments were specifically detected in the SON while angiotensin I, somatostatin-14, neurokinin B, galanin, and vasoactive-intestinal peptide (VIP) were detected in the SCN only. Lists of peptides were generated from both brain regions for comparison of the peptidome of SON and SCN nuclei. Moving from analysis of magnocellular neurons in tissue to cell culture, the direct peptidomics of the magnocellular and hippocampal neurons led to the detection of 10 peaks that were assigned to previously characterized peptides and 17 peaks that remain unassigned. Peptides from the vasopressin prohormone and secretogranin-2 are attributed to magnocellular neurons, whereas neurokinin A, peptide J, and neurokinin B are attributed to cultured hippocampal neurons. This approach enabled the elucidation of cell-specific prohormone processing and the discovery of cell-cell signaling peptides. The peptides with roles in the development of the pituitary were analyzed using transgenic mice. Hes1 KO is a genetically modified mouse that lives only e18.5 (embryonic days). Anterior pituitaries of Hes1 null mice exhibit hypoplasia due to increased cell death and reduced proliferation and in the intermediate lobe, the cells differentiate abnormally into somatotropes instead of melanotropes. These previous findings demonstrate that Hes1 has multiple roles in pituitary development, cell differentiation, and cell fate. AVP was detected in all samples. Interestingly, somatostatin [92-100] and provasopressin [151-168] were detected in the mutant but not in the wild type or heterozygous pituitaries while somatostatin-14 was detected only in the heterozygous pituitary. In addition, the putative peptide corresponding to m/z 1330.2 and POMC [205-222] are detected in the mutant and heterozygous pituitaries, but not in the wild type. These results indicate that Hes1 influences the processing of different prohormones having possible roles during development and opens new directions for further developmental studies. This research demonstrates the robust capabilities of MS, which ensures the unbiased direct analysis of peptides extracted from complex biological systems and allows addressing important questions to understand cell-cell signaling in the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Embryo implantation into the endometrium is a complex biological process involving the integration of steroid hormone signaling, endometrial tissue remodeling and maternal- fetal communications. A successful pregnancy is the outcome of the timely integration of these events during the early stages of implantation. The involvement of ovarian steroid hormones, estrogen (E) and progesterone (P), acting through their cognate receptors, is essential for uterine functions during pregnancy. The molecular mechanisms that control the process of implantation are undergoing active exploration. Through our recent efforts, we identified the transcription factor, CCAAT Enhancer Binding Protein Beta (C/EBPb) as a prominent target of estrogen and progesterone signaling in the uterus. The development of a C/EBPb-null mouse model, which is infertile, presented us with an opportunity to analyze the role of this molecule in uterine function. We discovered that C/EBPb functions in two distinct manners: (i) by acting as a mediator of E-induced proliferation of the uterine epithelium and (ii) by controlling uterine stromal cell differentiation, a process known as decidualization, during pregnancy. My studies have delineated important mechanisms by which E regulates C/EBPb expression to induce DNA replication and prevent apoptosis of uterine epithelial cells during E-induced epithelial growth. In subsequent studies, I analyzed the role of C/EBPb in decidualization and uncovered a unique mechanism by which C/EBPb regulates the synthesis of a unique laminin-containing extracellular matrix (ECM) that supports stromal cell differentiation and embryo invasion. In order to better define the role of laminin in implantation, we developed a laminin gamma 1-conditional knockout mouse model. This is currently an area of ongoing investigation. The information gained from our analysis of C/EBPb function in the uterus provides new insights into the mechanisms of steroid hormone action during early pregnancy. Ultimately, our findings may aid in the understanding of dysregulation of hormone-controlled pathways that underlie early pregnancy loss and infertility in women.