1 resultado para CALCULATED OSCILLATOR-STRENGTHS
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Luminescent excitation spectra were measured for the F and M centers in KCl; in particular, for the F band, M band, and the M2 transition. In all 3 cases, the spectra were nearly double-Gaussian in shape, and the efficiency for luminescence was nearly independent of the wavelength of the exciting light. A comparison of the absorption spectrum with the excitation spectrum of the F-band region of crystals with M centers present and oriented provided further evidence for the existence of the M2 transition of van Doorn and Haven and of Okamoto, and against the energy transfer theory of Lambe and Compton. The efficiency for luminescence of the M center upon M-band excitation was equal to the efficiency for F centers in pulse-annealed crystals of low F-center concentrations. The ratio of the efficiencies of the Ml to M2 transitions was 1.2 ± .25. The oscillator strengths of 3 of the M-center transitions in KCl relative to the oscillator strength for the F center were found to be in better agreement with the results reported by Okamoto, than with the results reported by Delbecq. The polarization of luminescence of M centers in KCl was measured at right angles to the exciting light, and was found to agree with the predictions of the van Doorn-Haven model of the M center. In NaF crystals having no absorption bands to the red side of the M band, the absorption and excitation spectra of the M band were accurately double-Gaussian over a wide range of wavelengths; the efficiency of luminescence of the M center was independent of the wavelength of the exciting light in that range; and the polarization of luminescence upon M-band excitation agreed well with the calculations based on the van DoornHaven model of the M center, In crystals in which the F band was bleached sufficiently to make it smaller in absorption height than the M band, several new color centers appeared on the red side of the M band, in contrast to the results reported by Blum; in these crystals, the polarization of luminescence of the M center upon M-band excitation disagreed strongly with theory, even though the absorptions for the new color centers were small compared to the M-band absorption.