3 resultados para Automation and robotics

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuropeptides affect the activity of the myriad of neuronal circuits in the brain. They are under tight spatial and chemical control and the dynamics of their release and catabolism directly modify neuronal network activity. Understanding neuropeptide functioning requires approaches to determine their chemical and spatial heterogeneity within neural tissue, but most imaging techniques do not provide the complete information desired. To provide chemical information, most imaging techniques used to study the nervous system require preselection and labeling of the peptides of interest; however, mass spectrometry imaging (MSI) detects analytes across a broad mass range without the need to target a specific analyte. When used with matrix-assisted laser desorption/ionization (MALDI), MSI detects analytes in the mass range of neuropeptides. MALDI MSI simultaneously provides spatial and chemical information resulting in images that plot the spatial distributions of neuropeptides over the surface of a thin slice of neural tissue. Here a variety of approaches for neuropeptide characterization are developed. Specifically, several computational approaches are combined with MALDI MSI to create improved approaches that provide spatial distributions and neuropeptide characterizations. After successfully validating these MALDI MSI protocols, the methods are applied to characterize both known and unidentified neuropeptides from neural tissues. The methods are further adapted from tissue analysis to be able to perform tandem MS (MS/MS) imaging on neuronal cultures to enable the study of network formation. In addition, MALDI MSI has been carried out over the timecourse of nervous system regeneration in planarian flatworms resulting in the discovery of two novel neuropeptides that may be involved in planarian regeneration. In addition, several bioinformatic tools are developed to predict final neuropeptide structures and associated masses that can be compared to experimental MSI data in order to make assignments of neuropeptide identities. The integration of computational approaches into the experimental design of MALDI MSI has allowed improved instrument automation and enhanced data acquisition and analysis. These tools also make the methods versatile and adaptable to new sample types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle filtering has proven to be an effective localization method for wheeled autonomous vehicles. For a given map, a sensor model, and observations, occasions arise where the vehicle could equally likely be in many locations of the map. Because particle filtering algorithms may generate low confidence pose estimates under these conditions, more robust localization strategies are required to produce reliable pose estimates. This becomes more critical if the state estimate is an integral part of system control. We investigate the use of particle filter estimation techniques on a hovercraft vehicle. The marginally stable dynamics of a hovercraft require reliable state estimates for proper stability and control. We use the Monte Carlo localization method, which implements a particle filter in a recursive state estimate algorithm. An H-infinity controller, designed to accommodate the latency inherent in our state estimation, provides stability and controllability to the hovercraft. In order to eliminate the low confidence estimates produced in certain environments, a multirobot system is designed to introduce mobile environment features. By tracking and controlling the secondary robot, we can position the mobile feature throughout the environment to ensure a high confidence estimate, thus maintaining stability in the system. A laser rangefinder is the sensor the hovercraft uses to track the secondary robot, observe the environment, and facilitate successful localization and stability in motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The philosophy of minimalism in robotics promotes gaining an understanding of sensing and computational requirements for solving a task. This minimalist approach lies in contrast to the common practice of first taking an existing sensory motor system, and only afterwards determining how to apply the robotic system to the task. While it may seem convenient to simply apply existing hardware systems to the task at hand, this design philosophy often proves to be wasteful in terms of energy consumption and cost, along with unnecessary complexity and decreased reliability. While impressive in terms of their versatility, complex robots such as the PR2 (which cost hundreds of thousands of dollars) are impractical for many common applications. Instead, if a specific task is required, sensing and computational requirements can be determined specific to that task, and a clever hardware implementation can be built to accomplish the task. Since this minimalist hardware would be designed around accomplishing the specified task, significant reductions in hardware complexity can be obtained. This can lead to huge advantages in battery life, cost, and reliability. Even if cost is of no concern, battery life is often a limiting factor in many applications. Thus, a minimalist hardware system is critical in achieving the system requirements. In this thesis, we will discuss an implementation of a counting, tracking, and actuation system as it relates to ergodic bodies to illustrate a minimalist design methodology.