2 resultados para Antioxidant defence system
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Metabolism in an environment containing of 21% oxygen has a high risk of oxidative damage due to the formation of reactive oxygen species. Therefore, plants have evolved an antioxidant system consisting of metabolites and enzymes that either directly scavenge ROS or recycle the antioxidant metabolites. Ozone is a temporally dynamic molecule that is both naturally occurring as well as an environmental pollutant that is predicted to increase in concentration in the future as anthropogenic precursor emissions rise. It has been hypothesized that any elevation in ozone concentration will cause increased oxidative stress in plants and therefore enhanced subsequent antioxidant metabolism, but evidence for this response is variable. Along with increasing atmospheric ozone concentrations, atmospheric carbon dioxide concentration is also rising and is predicted to continue rising in the future. The effect of elevated carbon dioxide concentrations on antioxidant metabolism varies among different studies in the literature. Therefore, the question of how antioxidant metabolism will be affected in the most realistic future atmosphere, with increased carbon dioxide concentration and increased ozone concentration, has yet to be answered, and is the subject of my thesis research. First, in order to capture as much of the variability in the antioxidant system as possible, I developed a suite of high-throughput quantitative assays for a variety of antioxidant metabolites and enzymes. I optimized these assays for Glycine max (soybean), one of the most important food crops in the world. These assays provide accurate, rapid and high-throughput measures of both the general and specific antioxidant action of plant tissue extracts. Second, I investigated how growth at either elevated carbon dioxide concentration or chronic elevated ozone concentration altered antioxidant metabolism, and the ability of soybean to respond to an acute oxidative stress in a controlled environment study. I found that growth at chronic elevated ozone concentration increased the antioxidant capacity of leaves, but was unchanged or only slightly increased following an acute oxidative stress, suggesting that growth at chronic elevated ozone concentration primed the antioxidant system. Growth at high carbon dioxide concentration decreased the antioxidant capacity of leaves, increased the response of the existing antioxidant enzymes to an acute oxidative stress, but dampened and delayed the transcriptional response, suggesting an entirely different regulation of the antioxidant system. Third, I tested the findings from the controlled environment study in a field setting by investigating the response of the soybean antioxidant system to growth at elevated carbon dioxide concentration, chronic elevated ozone concentration and the combination of elevated carbon dioxide concentration and elevated ozone concentration. In this study, I confirmed that growth at elevated carbon dioxide concentration decreased specific components of antioxidant metabolism in the field. I also verified that increasing ozone concentration is highly correlated with increases in the metabolic and genomic components of antioxidant metabolism, regardless of carbon dioxide concentration environment, but that the response to increasing ozone concentration was dampened at elevated carbon dioxide concentration. In addition, I found evidence suggesting an up regulation of respiratory metabolism at higher ozone concentration, which would supply energy and carbon for detoxification and repair of cellular damage. These results consistently support the conclusion that growth at elevated carbon dioxide concentration decreases antioxidant metabolism while growth at elevated ozone concentration increases antioxidant metabolism.
Resumo:
The processing of meats at the factory level can trigger the onset of lipid oxidation, which can lead to meat quality deterioration. Warmed over flavor is an off-flavor, which is associated with oxidative deterioration in meat. To avoid or delay the auto-oxidation process in meat products, synthetic and natural antioxidants have been successfully used. Grape (Vitis Vinifera) is of special interest due to its high content of phenolic compounds. Grape seed extract sold commercially as a dietary supplement, has the potential to reduce lipid oxidation and WOF in cooked ground beef when added at 1%. The objective of study 1 was to compare the antioxidant activity of natural antioxidants including grape seed extract and some herbs belonging to the Lamiaciae family: rosemary (Rosmarinus Officinalis), sage (Salvia Officinalis) and oregano (Origanum Vulgare) with commercial synthetic antioxidants like BHT, BHA, propyl gallate and ascorbic acid using the ORAC assay. All sample solutions were prepared to contain 1.8 gm sample/10 ml solvent. The highest antioxidant activity was observed for the grape seed extract sample (359.75 µM TE), while the lowest was observed for BHA, propyl gallate and rosemary also showed higher antioxidant potential with ORAC values above 300 μmol TE/g. ORAC values obtained for ascorbic acid and Sage were between 250-300μ mol TE/g while lowest values were obtained for Butylated Hydroxytoluene (28.50 µM TE). Based on the high ORAC values obtained for grape seed extract, we can conclude that byproducts of the wine/grape industry have antioxidant potential comparable to or better than those present in synthetic counterparts. The objective of study 2 was to compare three levels of grape seed extract (GSE) to commonly used antioxidants in a pre-cooked, frozen, stored beef and pork sausage model system. Antioxidants added for comparison with control included grape seed extract (100, 300, 500 ppm), ascorbic acid (AA, 100 ppm of fat) and propyl gallate (PG, 100 ppm of fat). Product was formed into rolls, frozen, sliced into patties, cooked on a flat griddle to 70C, overwrapped in PVC, and then frozen at –18C for 4 months. GSE- and PG-containing samples retained their fresh cooked beef odor and flavor longer (p<0.05) than controls during storage. Rancid odor and flavor scores of GSE-containing samples were lower (p<0.05) than those of controls after 4 months of storage. The L* value of all samples increased (p<0.05) during storage. Thiobarbituric acid reactive substances (TBARS) of the control and AA-containing samples increased (p<0.05); those of GSE-containing samples did not change significantly (p>0.05) over the storage period.