2 resultados para Alkali halides

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of uniaxial stress upon three types of imperfections occurring in the alkali halide crystal lattice has been investigated. The imperfections are the interstitial atom, the interstitial ion, and the negative ion vacancy. The interstitial atom, or H center, is a paraelastic defect which assumes a preferential crystal orientation in the field of an external mechanical stress. From the results of the reorientation kinetics - studies, it was possible to show that H centers are not stable in the KBr crystal lattice above 2SoK. At temperatures higher than 2SoK, the H centers are transformed into two new paraelastic defects, H(ii) and H(iii), possessing the same optical absorption band as the H center but differing both from the H' center and from each other in their reorientation kinetics. A study of the wavelength dependence of the H, H(ii), and VI (Na+) centers s~owed the 'existence of three similar-polarized transitions for each of these defects. One of these transitions, located at 230 run for all of the defects studied, was determined to be too high in energy to be explained by the simple X2 - level scheme. In addition, a comparison of various properties of the four defects indicates that the last three can be described as perturbed H centers. Dichroism measurements, performed as a function of temperature and wavelengt, h on the 230-nm I band in KBr, showed this band to be a composite of a band at 234 nm due to the I center and a band at 230 nm attributed to the H center. The I center dichroism was isolated and was observed under various experimental conditions. The results of these observations are consistent with a body-centered model for the I center in which the I-center absorption band is attributed to the excitation of a p-like electron on the interstitial Br- ion. Similar measurements were also perfonned on the a band in KI. The a-band dichroism measurements were found to be consistent with an electronic transition from an s-like ground state to a p-like excited state, indicating that the a center is best described as a quasi-molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a liquid is irradiated with ultrasound, acoustic cavitation (the formation, growth, and implosive collapse of bubbles in liquids irradiated with ultrasound) generally occurs. This is the phenomenon responsible for the driving of chemical reactions (sonochemistry) and the emission of light (sonoluminescence). The implosive collapse of bubbles in liquids results in an enormous concentration of sound energy into compressional heating of the bubble contents. Therefore, extreme chemical and physical conditions are generated during cavitation. The study of multibubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) in exotic liquids such as sulfuric acid (H2SO4) and phosphoric acid (H3PO4) leads to useful information regarding the intracavity conditions during bubble collapse. Distinct sonoluminescing bubble populations were observed from the intense orange and blue-white emissions by doping H2SO4 and H3PO4 with sodium salts, which provides the first experimental evidence for the injected droplet model over the heated-shell model for cavitation. Effective emission temperatures measured based on excited OH• and PO• emission indicate that there is a temperature inhomogeneity during MBSL in 85% H3PO4. The formation of a temperature inhomogeneity is due to the existence of different cavitating bubble populations: asymmetric collapsing bubbles contain liquid droplets and spherical collapsing bubbles do not contain liquid droplets. Strong molecular emission from SBSL in 65% H3PO4 have been obtained and used as a spectroscopic probe to determine the cavitation temperatures. It is found that the intracavity temperatures are dependent on the applied acoustic pressures and the thermal conductivities of the dissolved noble gases. The chemical and physical effects of ultrasound can be used for materials synthesis. Highly reactive species, including HO2•, H•, and OH• (or R• after additives react with OH•), are formed during aqueous sonolysis as a consequence of the chemical effects of ultrasound. Reductive species can be applied to synthesis of water-soluble fluorescent silver nanoclusters in the presence of a suitable stabilizer or capping agent. The optical and fluorescent properties of the Ag nanoclusters can be easily controlled by the synthetic conditions such as the sonication time, the stoichiometry of the carboxylate groups to Ag+, and the polymer molecular weight. The chemical and physical effects of ultrasound can be combined to prepare polymer functionalized graphenes from graphites and a reactive solvent, styrene. The physical effects of ultrasound are used to exfoliate graphites to graphenes while the chemical effects of ultrasound are used to induce the polymerization of styrene which can then functionalize graphene sheets via radical coupling. The prepared polymer functionalized graphenes are highly stable in common organic solvents like THF, CHCl3, and DMF. Ultrasonic spray pyrolysis (USP) is used to prepare porous carbon spheres using energetic alkali propiolates as the carbon precursors. In this synthesis, metal salts are generated in situ, introducing porous structures into the carbon spheres. When different alkali salts or their mixtures are used as the precursor, carbon spheres with different morphologies and structures are obtained. The different precursor decomposition pathways are responsible for the observed structural difference. Such prepared carbon materials have high surface area and are thermally stable, making them potentially useful for catalytic supports, adsorbents, or for other applications by integrating other functional materials into their pores.