3 resultados para Advanced oxidation process
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
The processing of meats at the factory level can trigger the onset of lipid oxidation, which can lead to meat quality deterioration. Warmed over flavor is an off-flavor, which is associated with oxidative deterioration in meat. To avoid or delay the auto-oxidation process in meat products, synthetic and natural antioxidants have been successfully used. Grape (Vitis Vinifera) is of special interest due to its high content of phenolic compounds. Grape seed extract sold commercially as a dietary supplement, has the potential to reduce lipid oxidation and WOF in cooked ground beef when added at 1%. The objective of study 1 was to compare the antioxidant activity of natural antioxidants including grape seed extract and some herbs belonging to the Lamiaciae family: rosemary (Rosmarinus Officinalis), sage (Salvia Officinalis) and oregano (Origanum Vulgare) with commercial synthetic antioxidants like BHT, BHA, propyl gallate and ascorbic acid using the ORAC assay. All sample solutions were prepared to contain 1.8 gm sample/10 ml solvent. The highest antioxidant activity was observed for the grape seed extract sample (359.75 µM TE), while the lowest was observed for BHA, propyl gallate and rosemary also showed higher antioxidant potential with ORAC values above 300 μmol TE/g. ORAC values obtained for ascorbic acid and Sage were between 250-300μ mol TE/g while lowest values were obtained for Butylated Hydroxytoluene (28.50 µM TE). Based on the high ORAC values obtained for grape seed extract, we can conclude that byproducts of the wine/grape industry have antioxidant potential comparable to or better than those present in synthetic counterparts. The objective of study 2 was to compare three levels of grape seed extract (GSE) to commonly used antioxidants in a pre-cooked, frozen, stored beef and pork sausage model system. Antioxidants added for comparison with control included grape seed extract (100, 300, 500 ppm), ascorbic acid (AA, 100 ppm of fat) and propyl gallate (PG, 100 ppm of fat). Product was formed into rolls, frozen, sliced into patties, cooked on a flat griddle to 70C, overwrapped in PVC, and then frozen at –18C for 4 months. GSE- and PG-containing samples retained their fresh cooked beef odor and flavor longer (p<0.05) than controls during storage. Rancid odor and flavor scores of GSE-containing samples were lower (p<0.05) than those of controls after 4 months of storage. The L* value of all samples increased (p<0.05) during storage. Thiobarbituric acid reactive substances (TBARS) of the control and AA-containing samples increased (p<0.05); those of GSE-containing samples did not change significantly (p>0.05) over the storage period.
Resumo:
The role of computer modeling has grown recently to integrate itself as an inseparable tool to experimental studies for the optimization of automotive engines and the development of future fuels. Traditionally, computer models rely on simplified global reaction steps to simulate the combustion and pollutant formation inside the internal combustion engine. With the current interest in advanced combustion modes and injection strategies, this approach depends on arbitrary adjustment of model parameters that could reduce credibility of the predictions. The purpose of this study is to enhance the combustion model of KIVA, a computational fluid dynamics code, by coupling its fluid mechanics solution with detailed kinetic reactions solved by the chemistry solver, CHEMKIN. As a result, an engine-friendly reaction mechanism for n-heptane was selected to simulate diesel oxidation. Each cell in the computational domain is considered as a perfectly-stirred reactor which undergoes adiabatic constant- volume combustion. The model was applied to an ideally-prepared homogeneous- charge compression-ignition combustion (HCCI) and direct injection (DI) diesel combustion. Ignition and combustion results show that the code successfully simulates the premixed HCCI scenario when compared to traditional combustion models. Direct injection cases, on the other hand, do not offer a reliable prediction mainly due to the lack of turbulent-mixing model, inherent in the perfectly-stirred reactor formulation. In addition, the model is sensitive to intake conditions and experimental uncertainties which require implementation of enhanced predictive tools. It is recommended that future improvements consider turbulent-mixing effects as well as optimization techniques to accurately simulate actual in-cylinder process with reduced computational cost. Furthermore, the model requires the extension of existing fuel oxidation mechanisms to include pollutant formation kinetics for emission control studies.
Resumo:
Most commercially available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages including low resistance to fouling, low chemical and thermal stabilities and limited chlorine tolerance. To address these problems, advanced RO/NF membranes are being developed from polyimides for water and wastewater treatments. The following three projects have resulted from my research. (1) Positively charged and solvent resistant NF membranes. The use of solvent resistant membranes to facilitate small molecule separations has been a long standing industry goal of the chemical and pharmaceutical industries. We developed a solvent resistant membrane by chemically cross-linking of polyimide membrane using polyethylenimine. This membrane showed excellent stability in almost all organic solvents. In addition, this membrane was positively charged due to the amine groups remaining on the surface. As a result, high efficiency (> 95%) and selectivity for multivalent heavy metal removal was achieved. (2) Fouling resistant NF membranes. Antifouling membranes are highly desired for “all” applications because fouling will lead to higher energy demand, increase of cleaning and corresponding down time and reduced life-time of the membrane elements. For fouling prevention, we designed a new membrane system using a coating technique to modify membrane surface properties to avoid adsorption of foulants like humic acid. A layer of water-soluble polymer such as polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyvinyl sulfate (PVS) or sulfonated poly(ether ether ketone) (SPEEK), was adsorbed onto the surface of a positively charged membrane. The resultant membranes have a smooth and almost neutrally charged surface which showed better fouling resistance than both the positively charged NF membranes and commercially available negatively charged NTR-7450 membrane. In addition, these membranes showed high efficiency for removal of multivalent ions (> 95% for both cations and anions). Therefore, these antifouling surfaces can be potentially used for water softening, water desalination and wastewater treatment in a membrane bioreactor (MBR) process. (3) Thermally stable RO membranes. Commercial RO membranes cannot be used at temperature higher than 45°C due to the use of polysulfone substrate, which often limits their applications in industries. We successfully developed polyimides as the membrane substrate for thermally stable RO membranes due to their high thermal resistance. The polyimide-based composite polyamide membranes showed desalination performance comparable to the commercial TFC membrane. However, the key advantage of the polyimide-based membrane is its high thermal stability. As the feed temperature increased from 25oC to 95oC, the water flux increased 5 - 6 times while the salt rejection almost kept constant. This membrane appears to provide a unique solution for hot water desalination and also a feasible way to improve the water productivity by increasing the operating temperature without any drop in salt rejection.