2 resultados para 270103 Protein Targeting and Signal Transduction
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Abstract The two-component based chemotaxis signal transduction system allows flagellated bacteria to sense their surrounding chemical environment and move towards more favorable conditions. The attractant signals can be sensed by transmembrane chemoreceptors, and then transmitted to the histidine kinase CheA. Once activated, CheA interacts with the response regulator CheY through phosphorelay, which causes a change in the rotation of the flagella. The direction of flagella rotation determines whether a cell swims straight or just tumbles. Cells also need adaptation to respond to a change in chemical concentrations, and return to their prestimulated level. Adaptation in the B. subtilis chemotaxis system is achieved by three coordinated systems: the methylation system, the CheC/CheD/CheY-p system and the CheV system. CheD, the previously identified receptor deamidase, was shown to be critical to the ability of B. subtilis to perform chemotaxis and is the main focus of this study. This study started from characterization of the enzymatic mechanism of CheD. Results showed that CheD deamidase uses a cysteine hydrolase mechanism. The catalytic triad consisting of Cys33-His50-Thr27, and Ser27 is essential for receptor recognition and binding. In addition, in this study CheC was found to inhibit CheD’s deamidase activity. Through mutant screening, Phe102 on CheD was found to be the essential site to interact with CheC. Furthermore, the CheD/CheC interaction is necessary for the robust chemotaxis in vivo as demonstrated by the cheD (F102E) mutant, which lacks the ability to swim on swarm plates. Despite its deamidase activity, we hypothesized that CheD’s main role is its involvement in the CheD-CheC-CheY-p negative feedback pathway during adaptation. In particular, CheD is likely to help stabilize the transient kinase-activating state through binding to receptors. When CheY-p level is increased, CheC-CheY-p complex may attract CheD away from receptors. In this study, CheC-CheD binding kinetics with CheY or CheYp presence was successfully obtained by a series of SPR experiments. The increased affinity of CheD for CheC in presence of CheYp but not CheY makes likely the hypothesis that CheC-CheD-CheY interact as part of a negative feedback pathway during adaptation. Last, the interaction between CheD and chemoreceptor McpC was studied in order to better understand the role of CheD in adaptation. Results showed that Q304 and Q305 on McpC are essential to recruit CheD. Additionally, the reduced levels of CheD in mcpC (Q304A) or (Q305A) mutants suggested that the dynamic interaction between CheD and receptors is vital to maintain the normal CheD level. These findings suggest more complicated roles of CheD than its previously identified function as a receptor deamidase, and will lead to a clearer picture of the coordination of the three adaptational systems in the B. subtilis chemotactic sensory transduction system.
Resumo:
Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.