2 resultados para 240302 Nuclear and Particle Physics

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show for the first time that upon injection into the cytoplasm of the oocyte, fluorescein-labeled spliceosomal snRNAs, in the context of functional snRNPs, are targeted to elongating pre-mRNAs. This finding presents us with a novel assay with which to dissect the mechanism by which snRNPs are targeted to nascent pre-mRNA transcripts. Two critical advantages offered by this system are immediately evident. First, it allows us to investigate the mechanisms employed to recruit snRNPs as it actually transpires within the realm of the cell nucleus. Second, it allows a genome-wide analysis of snRNP recruitment to nascent transcripts, and, hence, the conclusions drawn from these studies do not depend on the sequence of any particular promoter or pre-mRNA. Indeed, it is with this assay that we have stumbled upon a most unanticipated discovery: Contrary to the current paradigm, the co-transcriptional recruitment of splicing snRNPs to nascent transcripts is not contingent on their role in splicing in vivo. Based on these and other data, we have constructed a two-step recruitment-loading model wherein snRNPs are first recruited to pre-mRNA transcripts and only then loaded directly onto cis-acting sequences on nascent pre-mRNA. While conducting studies on snRNP trafficking, a new discovery was made. We found that the lampbrush chromosomes could be visualized by light microscopy in vivo, and that these chromosomes have an architecture that is identical with those in formaldehyde treated nuclear spread preparations. Importantly, we now have the first system with which we can examine the dynamic interactions of macromolecules with specific RNA polymerase II transcriptional units in the live nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small particles and their dynamics are of widespread interest due both to their unique properties and their ubiquity. Here, we investigate several classes of small particles: colloids, polymers, and liposomes. All these particles, due to their size on the order of microns, exhibit significant similarity in that they are large enough to be visualized in microscopes, but small enough to be significantly influenced by thermal (or Brownian) motion. Further, similar optical microscopy and experimental techniques are commonly employed to investigate all these particles. In this work, we develop single particle tracking techniques, which allow thorough characterization of individual particle dynamics, observing many behaviors which would be overlooked by methods which time or ensemble average. The various particle systems are also similar in that frequently, the signal-to-noise ratio represented a significant concern. In many cases, development of image analysis and particle tracking methods optimized to low signal-to-noise was critical to performing experimental observations. The simplest particles studied, in terms of their interaction potentials, were chemically homogeneous (though optically anisotropic) hard-sphere colloids. Using these spheres, we explored the comparatively underdeveloped conjunction of translation and rotation and particle hydrodynamics. Developing off this, the dynamics of clusters of spherical colloids were investigated, exploring how shape anisotropy influences the translation and rotation respectively. Transitioning away from uniform hard-sphere potentials, the interactions of amphiphilic colloidal particles were explored, observing the effects of hydrophilic and hydrophobic interactions upon pattern assembly and inter-particle dynamics. Interaction potentials were altered in a different fashion by working with suspensions of liposomes, which, while homogeneous, introduce the possibility of deformation. Even further degrees of freedom were introduced by observing the interaction of particles and then polymers within polymer suspensions or along lipid tubules. Throughout, while examination of the trajectories revealed that while by some measures, the averaged behaviors accorded with expectation, often closer examination made possible by single particle tracking revealed novel and unexpected phenomena.