25 resultados para University of Illinois at Urbana-Champaign. College of Engineering
Resumo:
Annual Report, Federal Aid Project F-123-R-12, April 1, 2005 - March 31, 2006
Resumo:
ID: 8827; issued June 1, 1998
Resumo:
issued June 1996
Resumo:
ID: 8863; issued June 1, 1999
Resumo:
issued June 1995
Resumo:
Discusses the approach taken in Phase 1 of a three-phase project Folktales, Facets and FRBR [funded by a grant from OCLC/ALISE]. This project works with the special collection of folktales at the Center for Children’s Books (CCB) at the University of Illinois at Urbana-Champaign, and the scholars who use this collection. The project aims to enhance the effectiveness and efficiency of folktale access through deep understanding of user needs. Phase 1 included facet analysis of the bibliographic records for a sample of 100 folktale books in the CCB, and task analysis of interviews with four CCB-affiliated faculty. Describes the information tasks, information seeking obstacles, and desired features for a discovery and access tool related to folktales for this initial group of scholarly users of folktales.
Resumo:
Division of Fisheries, Illinois Department of Natural Resources Grant/Contract No: F-123 R-14
Resumo:
Division of Fisheries, Illinois Department of Natural Resources Grant/Contract No: F-123 R-13
Resumo:
Division of Fisheries, Illinois Department of Natural Resources Grant/Contract No: Federal Aid Project F-123 R-15
Resumo:
This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on potential energy shaping for fully actuated bipeds, we study in detail the shaping of kinetic energy for bipedal robots, giving special treatment to issues of underactuation. Drawing inspiration from features of human walking, an underactuated kinetic-shaping control is presented that provides efficient regulation of walking speed while adjusting step length. Previous results on energetic symmetries of bipedal walking are also extended, resulting in a control that allows regulation of speed and step length while walking on any slope. Finally we formalize the optimal gait regulation problem and propose a dynamic programming solution seeded with passive-dynamic limit cycles. Observations of the optimal solutions generated by this method reveal further similarities between passive dynamic walking and human locomotion and give insight into the structure of minimum-effort controls for walking.