3 resultados para traduzione in portogheselibro per bambinimestieri tradizionali

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analisi contrastiva delle modalità di traduzione in finnico dei Tempi verbali e delle perifrasi aspettuali dell italiano (Italian Philology) The topic of this research is a contrastive study of tenses and aspect in Italian and in Finnish. The study aims to develop a research method for analyzing translations and comparable texts (non-translation) written in a target language. Thus, the analysis is based on empirical data consisting of translations of novels from Italian to Finnish and vice versa. In addition to this, for the section devoted to solutions adopted in Finnish for translating the Italian tenses Perfetto Semplice and Perfetto Composto, 39 Finnish native speakers were asked to answer questions concerning the choice of Perfekti and Imperfekti in Finnish. The responses given by the Finnish informants were compared to the choices made by translators in the target language, and in this way it was possible both to benefit from the motivation provided by native speakers to explain the selection of a tense (Imperfekti/Perfekti) in a specific context compared with the Italian formal equivalents (Perfetto Composto/Perfetto Semplice), and to define the specific features of the Finnish verb tenses. The research aims to develop a qualitative method for the analysis of formal equivalents and translational changes ( shifts ). Although, as the choice of Italian and Finnish progressive forms is optional and related to speaker preferences, besides the qualitative analysis, I also considered it necessary to operate a quantitative one in order to find out whether the two items share the same degree of correspondence in frequency of use. In this study I explain translation choices in light of cognitive grammar, suggesting that particular translation relationships derive from so-called construal operations. I use the concepts of cognitive linguistics not only to analyze the convergences and divergences of the two aspectual systems, but also to redefine some general procedures related to the phenomenon of translation. For the practical analysis of the corpus were for the most part employed theoretical categories developed in a framework proposed by Pier Marco Bertinetto. Following this approach, the notions of aspect (the morphologic or morphosyntactic, subjective level) and actionality (the lexical aspect or objective level, traditionally Aktionsart) are carefully distinguished. This also allowed me to test the applicability of these distinctions to two languages typologically different from each other. The data allowed both the analysis of the semantic and pragmatic features that determine tense and aspect choices in these two languages, and to discover the correspondences between the two language systems and the strategies that translators are forced to resort to in particular situations. The research provides not only a detailed and analytically argued inventory about possible solutions for translating Italian tenses and aspectual devices in Finnish that could be of pedagogical relevance, but also new contributions about the specific uses of time-aspectual devices in the two languages in question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lakes are an important component of ecosystem carbon cycle through both organic carbon sequestration and carbon dioxide and methane emissions, although they cover only a small fraction of the Earth's surface area. Lake sediments are considered to be one of rather perma-nent sinks of carbon in boreal regions and furthermore, freshwater ecosystems process large amounts of carbon originating from terrestrial sources. These carbon fluxes are highly uncer-tain especially in the changing climate. -- The present study provides a large-scale view on carbon sources and fluxes in boreal lakes situated in different landscapes. We present carbon concentrations in water, pools in lake se-diments, and carbon gas (CO2 and CH4) fluxes from lakes. The study is based on spatially extensive and randomly selected Nordic Lake Survey (NLS) database with 874 lakes. The large database allows the identification of the various factors (lake size, climate, and catchment land use) determining lake water carbon concentrations, pools and gas fluxes in different types of lakes along a latitudinal gradient from 60oN to 69oN. Lakes in different landscapes vary in their carbon quantity and quality. Carbon (C) content (total organic and inorganic carbon) in lakes is highest in agriculture and peatland dominated areas. In peatland rich areas organic carbon dominated in lakes but in agricultural areas both organic and inorganic C concentrations were high. Total inorganic carbon in the lake water was strongly dependent on the bedrock and soil quality in the catchment, especially in areas where human influence in the catchment is low. In inhabited areas both agriculture and habitation in the catchment increase lake TIC concentrations, since in the disturbed soils both weathering and leaching are presumably more efficient than in pristine areas. TOC concentrations in lakes were related to either catchment sources, mainly peatlands, or to retention in the upper watercourses. Retention as a regulator of the TOC concentrations dominated in southern Finland, whereas the peatland sources were important in northern Finland. The homogeneous land use in the north and the restricted catchment sources of TOC contribute to the close relationship between peatlands and the TOC concentrations in the northern lakes. In southern Finland the more favorable climate for degradation and the multiple sources of TOC in the mixed land use highlight the importance of retention. Carbon processing was intensive in the small lakes. Both CO2 emission and the Holocene C pool in sediments per square meter of the lake area were highest in the smallest lakes. How-ever, because the total area of the small lakes on the areal level is limited, the large lakes are important units in C processing in the landscape. Both CO2 and CH4 concentrations and emissions were high in eutrophic lakes. High availability of nutrients and the fresh organic matter enhance degradation in these lakes. Eutrophic lakes are often small and shallow, enabling high contact between the water column and the sediment. At the landscape level, the lakes in agricultural areas are often eutrophic due to fertile soils and fertilization of the catchments, and therefore they also showed the highest CO2 and CH4 concentrations. Export from the catchments and in-lake degradation were suggested to be equally important sources of CO2 and CH4 in fall when the lake water column was intensively mixed and the transport of sub-stances from the catchment was high due to the rainy season. In the stagnant periods, especially in the winter, in-lake degradation as a gas source was highlighted due to minimal mixing and limited transport of C from the catchment. The strong relationship between the annual CO2 level of lakes and the annual precipitation suggests that climate change can have a major impact on C cycling in the catchments. Increase in precipitation enhances DOC export from the catchments and leads to increasing greenhouse gas emissions from lakes. The total annual CO2 emission from Finnish lakes was estimated to be 1400 Gg C a-1. The total lake sediment C pool in Finland was estimated to be 0.62 Pg, giving an annual sink in Finnish lakes of 65 Gg C a-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male flowering was studied at the canopy level in 10 silver birch (Betula pendula Roth) stands from 8 localities and in 14 downy birch (B. pubescens Ehrh.) stands from 10 localities in Finland from 1963 to 1973. Distributions of cumulative pollen catches were compared to the normal Gaussian distribution. The basis for the timing of flowering was the 50 per cent point of the anthesis-fitted normal distribution. To eliminate effects of background pollen, only the central, normally distributed part of the cumulative distribution was used. Development up to the median point of the distribution was measured and tested in calendar days, in degree days (> 5 °C) and in period units. The count of each parameter began on and included March 19. Male flowering in silver birch occurred from late April to late June depending on latitude, and flowering in downy birch took place from early May to early July. The heat sums needed for male flowering varied in downy birch stands latitudinally but there was practically no latitudinal variation in heat sums needed for silver birch flowering. The amount of male flowering in stands of both birch species were found to have a large annual variation but without any clear periodicity. The between years pollen catch variation in stands of either birch species did not show any significant latitudinal correlation in contrast to Norway spruce stands. The period unit heat sum gave the most accurate forecast of the timing of flowering for 60 per cent of the silver birch stands and for 78.6 per cent of the for downy birch stands. Calendar days, however, gave the best forecast for silver birch in 25 per cent of the cases, while degree days gave the best forecast for downy birch in 21.4 per cent of the cases. Silver birch seems to have a local inclination for a more fixed flowering date compared to downy birch, which could mean a considerable photoperiodic influence on flowering time of silver birch. Silver birch and downy birch had different geographical correlations. Frequent hybridization of birch species occurs more often in northern Finland in than in more southern latitudes. The different timing in flowering caused increasing scatter in flowering times in the north, especially in the case of downy birch. The chance of simultaneous flowering of silver birch and downy birch so increased northwards due to a more variable climate and also higher altitudinal variations. Compared with conifers, the reproduction cycles of both birch species were found to be well protected from damage by frost.