5 resultados para toll-like receptors

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontal Disease affects the supporting structures of the teeth and is initiated by a microbial biofilm called dental plaque. Severity ranges from superficial inflammation of the gingiva (gingivitis) to extensive destruction of connective tissue and bone leading to tooth loss (periodontitis). In periodontitis the destruction of tissue is caused by a cascade of microbial and host factors together with proteolytic enzymes. Matrix metalloproteinases (MMPs) are known to be central mediators of the pathologic destruction in periodontitis. Initially plaque bacteria provide pathogen-associated molecular patterns (PAMPs) which are sensed by Toll-like receptors (TLRs), and initiate intracellular signaling cascades leading to host inflammation. Our aim was to characterize TNF-α (tumor necrosis factor-alpha) and its type I and II receptors in periodontal tissues, as well as, the effects of TNF-α, IL-1β (interleukin-1beta) and IL-17 on the production and/or activation of MMP-3, MMP-8 and MMP-9. Furthermore we mapped the TLRs in periodontal tissues and assessed how some of the PAMPs binding to the key TLRs found in periodontal tissues affect production of TNF-α and IL-1β by gingival epithelial cells with or without combination of IL-17. TNF-α and its receptors were detected in pericoronitis. Furthermore, increased expression of interleukin-1β and vascular cell adhesion molecule-1 was found as a biological indicator of TNF-α ligand-receptor interaction. MMP-3, -8, and 9 were investigated in periodontitis affected human gingival crevicular fluid and gingival fibroblasts produced pro-MMP-3. Following that, the effect of IL-17 was studied on MMP and pro-inflammatory cytokine production. IL-17 was increased in periodontitis and up-regulated IL-1β, TNF-α, MMP-1 and MMP-3. We continued by demonstrating TLRs in gingival tissues, in which significant differences between patients with periodontitis and healthy controls were found. Finally, enzyme-linked immunosorbent assays were performed to show that the gingival cells response to inflammatory responses in a TLR-dependent manner. Briefly, this thesis demonstrates that TLRs are present in periodontal tissues and present differences in periodontitis compared to healthy controls. The cells of gingival tissues respond to inflammatory process in a TLR-dependent manner by producing pro-inflammatory cytokines. During the destruction of periodontal tissues, the release (IL-1β and TNF-α) and co-operation with other pro-inflammatory cytokines (IL-17), which in turn increase the inflammation and thus be more harmful to the host with the increased presence of MMPs (MMP-1, MMP-3, MMP-8, MMP-9) in diseased over healthy sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innate immunity and host defence are rapidly evoked by structurally invariant molecular motifs common to microbial world, called pathogen associated molecular patterns (PAMPs). In addition to PAMPs, endogenous molecules released in response to inflammation and tissue damage, danger associated molecular patterns (DAMPs), are required for eliciting the response. The most important PAMPs of viruses are viral nucleic acids, their genome or its replication intermediates, whereas the identity and characteristics of virus infection-induced DAMPs are poorly defined. PAMPs and DAMPs engage a limited set of germ-line encoded pattern recognition receptors (PRRs) in immune and non-immune cells. Membrane-bound Toll-like receptors (TLRs), cytoplasmic retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptor (NLRs) are important PRRs involved in the recognition of the molecular signatures of viral infection, such as double-stranded ribonucleic acids (dsRNAs). Engagement of PRRs results in local and systemic innate immune responses which, when activated against viruses, evoke secretion of antiviral and pro-inflammatory cytokines, and programmed cell death i.e., apoptosis of the virus-infected cell. Macrophages are the central effector cells of innate immunity. They produce significant amounts of antiviral cytokines, called interferons (IFNs), and pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. IL-1β and IL-18 are synthesized as inactive precursors, pro-IL-1β and pro-IL-18, that are processed by caspase-1 in a cytoplasmic multiprotein complex, called the inflammasome. After processing, these cytokines are biologically active and will be secreted. The signals and secretory routes that activate inflammasomes and the secretion of IL-1β and IL-18 during virus infections are poorly characterized. The main goal of this thesis was to characterize influenza A virus-induced innate immune responses and host-virus interactions in human primary macrophages during an infection. Methodologically, various techniques of cellular and molecular biology, as well as proteomic tools combined with bioinformatics, were utilized. Overall, the thesis provides interesting insights into inflammatory and antiviral innate immune responses, and has characterized host-virus interactions during influenza A virus-infection in human primary macrophages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hantaviruses have a tri-segmented negative-stranded RNA genome. The S segment encodes the nucleocapsid protein (N), M segment two glycoproteins, Gn and Gc, and the L segment the RNA polymerase. Gn and Gc are co-translationally cleaved from a precursor and targeted to the cis-Golgi compartment. The Gn glycoprotein consists of an external domain, a transmembrane domain and a C-terminal cytoplasmic domain. In addition, the S segment of some hantaviruses, including Tula and Puumala virus, have an open reading frame (ORF) encoding a nonstructural potein NSs that can function as a weak interferon antagonist. The mechanisms of hantavirus-induced pathogenesis are not fully understood but it is known that both hemorrhagic fever with renal syndrome (HFRS) and hantavirus (cardio) pulmonary syndrome (HCPS) share various features such as increased capillary permeability, thrombocytopenia and upregulation of TNF-. Several hantaviruses have been reported to induce programmed cell death (apoptosis), such as TULV-infected Vero E6 cells which is known to be defective in interferon signaling. Recently reports describing properties of the hantavirus Gn cytoplasmic tail (Gn-CT) have appeared. The Gn-CT of hantaviruses contains animmunoreceptor tyrosine-based activation motif (ITAM) which directs receptor signaling in immune and endothelial cells; and contain highly conserved classical zinc finger domains which may have a role in the interaction with N protein. More functions of Gn protein have been discovered, but much still remains unknown. Our aim was to study the functions of Gn protein from several aspects: synthesis, degradation and interaction with N protein. Gn protein was reported to inhibit interferon induction and amplication. For this reason, we also carried out projects studying the mechanisms of IFN induction and evasion by hantavirus. We first showed degradation and aggresome formation of the Gn-CT of the apathogenic TULV. It was reported earlier that the degradation of Gn-CT is related to the pathogenicity of hantavirus. We found that the Gn-CT of the apathogenic hantaviruses (TULV, Prospect Hill virus) was degraded through the ubiquitin-proteasome pathway, and TULV Gn-CT formed aggresomes upon treatment with proteasomal inhibitor. Thus the results suggest that degradation and aggregation of the Gn-CT may be a general property of most hantaviruses, unrelated to pathogenicity. Second, we investigated the interaction of TULV N protein and the TULV Gn-CT. The Gn protein is located on the Golgi membrane and its interaction with N protein has been thought to determine the cargo of the hantaviral ribonucleoprotein which is an important step in virus assembly, but direct evidence has not been reported. We found that TULV Gn-CT fused with GST tag expressed in bacteria can pull-down the N protein expressed in mammalian cells; a mutagenesis assay was carried out, in which we found that the zinc finger motif in Gn-CT and RNA-binding motif in N protein are indispensable for the interaction. For the study of mechanisms of IFN induction and evasion by Old World hantavirus, we found that Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5 -termini of their genomic RNAs are monophosphorylated. DsRNA and tri-phosphorylated RNA are considered to be critical activators of innate immnity response by interacting with PRRs (pattern recognition receptors). We examined systematically the 5´-termini of hantavirus genomic RNAs and the dsRNA production by different species of hantaviruses. We found that no detectable dsRNA was produced in cells infected by the two groups of the old world hantaviruses: Seoul, Dobrava, Saaremaa, Puumala and Tula. We also found that the genomic RNAs of these Old World hantaviruses carry 5´-monophosphate and are unable to trigger interferon induction. The antiviral response is mainly mediated by alpha/beta interferon. Recently the glycoproteins of the pathogenic hantaviruses Sin Nombre and New York-1 viruses were reported to regulate cellular interferon. We found that Gn-CT can inhibit the induction of IFN activation through Toll-like receptor (TLR) and retinoic acid-inducible gene I-like RNA helicases (RLH) pathway and that the inhibition target lies at the level of TANK-binding kinase 1 (TBK-1)/ IKK epislon complex and myeloid differentiation primary response gene (88) (MyD88) / interferon regulatory factor 7 (IRF-7) complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins are complex biomacromolecules playing fundamental roles in the physiological processes of all living organisms. They function as structural units, enzymes, transporters, process regulators, and signal transducers. Defects in protein functions often derive from genetic mutations altering the protein structure, and impairment of essential protein functions manifests itself as pathological conditions. Proteins operate through interactions, and all protein functions depend on protein structure. In order to understand biological mechanisms at the molecular level, one has to know the structures of the proteins involved. This thesis covers structural and functional characterization of human filamins. Filamins are actin-binding and -bundling proteins that have numerous interaction partners. In addition to their actin-organizing functions, filamins are also known to have roles in cell adhesion and locomotion, and to participate in the logistics of cell membrane receptors, and in the coordination of intracellular signaling pathways. Filamin mutations in humans induce severe pathological conditions affecting the brain, bones, limbs, and the cardiovascular system. Filamins are large modular proteins composed of an N-terminal actin-binding domain and 24 consecutive immunoglobulin-like domains (IgFLNs). Nuclear magnetic resonance (NMR) spectroscopy is a versatile method of gaining insight into protein structure, dynamics and interactions. NMR spectroscopy was employed in this thesis to study the atomic structure and interaction mechanisms of C-terminal IgFLNs, which are known to house the majority of the filamin interaction sites. The structures of IgFLN single-domains 17 and 23 and IgFLN domain pairs 16-17 and 18-19 were determined using NMR spectroscopy. The structures of domain pairs 16 17 and 18 19 both revealed novel domain domain interaction modes of IgFLNs. NMR titrations were employed to characterize the interactions of filamins with glycoprotein Ibα, FilGAP, integrin β7 and dopamine receptors. Domain packing of IgFLN domain sextet 16 21 was further characterized using residual dipolar couplings and NMR relaxation analysis. This thesis demonstrates the versatility and potential of NMR spectroscopy in structural and functional studies of multi-domain proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.